Course Syllabus
| Bialystok University of Technology | Faculty of Computer Science | ||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Field of study | Data Science |
Degree level and programme type |
Engineer's degree full-time programme |
||||||||||||||||||||||||
| Specialization/ diploma path |
Study profile | academic | |||||||||||||||||||||||||
| Course name | no English name yet ! | E | Course code | DS1S4ASO | |||||||||||||||||||||||
| Course type | obligatory | ||||||||||||||||||||||||||
| Forms and number of hours of tuition | L | C | LC | P | SW | FW | S | Semester | 4 | ||||||||||||||||||
| 30 | 30 | No. of ECTS credits | 5 | ||||||||||||||||||||||||
| Program valid from | 2025/2026 | ||||||||||||||||||||||||||
| Entry requirements | Linear Algebra 1 (DS1S1AL1), Calculus 1 (DS1S1AM1), no English name yet ! (DS1S3UM1), | ||||||||||||||||||||||||||
| Course objectives |
Acquisition by students of fundamental knowledge of signal and image analysis and processing methods, with particular emphasis on understanding phenomena and interpreting results. Development of practical skills in the analysis and interpretation of digital signals and images using modern tools. Reference to SFIA framework: Data science DATS - level 3 Data engineering DENG - level 3 Specialist advice TECH - level 2 |
||||||||||||||||||||||||||
| Framework content | |||||||||||||||||||||||||||
| Other information about the course | the course is related to the scientific research conducted at the University | ||||||||||||||||||||||||||
| Calculation: | Student workload (in hours): | Total hours |
Including contact hours |
Including practical hours |
|||||||||||||||||||||||
| participation in lectures | 30 | 30 | |||||||||||||||||||||||||
| participation in other forms of teaching | 30 | 30 | 30 | ||||||||||||||||||||||||
| individual support of the learning process, participation in exams and assessments organized outside the schedule of classes | 4 | 4 | |||||||||||||||||||||||||
| preparations for the exam | 10 | ||||||||||||||||||||||||||
| preparations for classes | 51 | 51 | |||||||||||||||||||||||||
| Cumulative hours: | 125 | 64 | 81 | ||||||||||||||||||||||||
| Cumulative number of ECTS credits: | 5 | 2.6 | 3.2 | ||||||||||||||||||||||||
| Expected program-specific learning outcomes | Knowledge | Skills | Social competences |
||||||||||||||||||||||||
| DS1_W01 | DS1_U01 | DS1_K01 | |||||||||||||||||||||||||
| DS1_W02 | DS1_U02 | ||||||||||||||||||||||||||
| DS1_W03 | DS1_U03 | ||||||||||||||||||||||||||
| Objectives and framework content formulated by | dr hab. inż. Sławomir Zieliński | Date: | 29/05/2025 | ||||||||||||||||||||||||
| Implemented in the academic year | 2026/2027 | ||||||||||||||||||||||||||
| Course objectives | |||||||||||||||||||||||||||
| 1. | Fundamentals of signal analysis and signal processing in the time and frequency domains. Techniques of signal filtering and fundamentals of image representation and processing. Filtering, transforms, and Fourier analysis of images. Practical aspects of signal and image analysis. Implementation of signal and image analysis methods, including time and frequency domain analysis and filtering techniques. Comprehensive analysis of a selected problem in signal or image processing. | ||||||||||||||||||||||||||
| Lecture | |||||||||||||||||||||||||||
| 1. | Introduction to signal analysis. Analog and digital signals. Sampling and quantization. The sampling theorem. Aliasing phenomenon and its effects. | ||||||||||||||||||||||||||
| 2. | 2 Analysis in the frequency domain. Fourier series. Fourier transform. Interpretation of the signal spectrum. Time windows and their effect on the analysis. | ||||||||||||||||||||||||||
| 3. | 3 Time-frequency analysis. Spectrograms and their interpretation. Short-time Fourier transform. Wavelet transform - basics. | ||||||||||||||||||||||||||
| 4. | 4 Filtering of signals. Digital filters and their characteristics. Design of filters. Applications in noise reduction and feature extraction. | ||||||||||||||||||||||||||
| 5. | Methods of analysis of multivariate signals. PCA and ICA. | ||||||||||||||||||||||||||
| 6. | Methods of signal parameterization. | ||||||||||||||||||||||||||
| 7. | 7 Automatic classification of signals. | ||||||||||||||||||||||||||
| 8. | Fundamentals of image processing. Representation of digital images. Color spaces. Histogram and its interpretation. Basic operations on images. | ||||||||||||||||||||||||||
| 9. | 9 Image transformations. Point, local, and global operations. Filtering of images. Edge detection. Segmentation of images. | ||||||||||||||||||||||||||
| 10. | 10 Fourier analysis of images. Two-dimensional Fourier transform. Interpretation of the image spectrum. Applications in filtering and compression. | ||||||||||||||||||||||||||
| 11. | Methods of parameterization of images. | ||||||||||||||||||||||||||
| 12. | Practical aspects of signal and image analysis. Overview of applications in various fields. Tools for analysis and visualization. | ||||||||||||||||||||||||||
| 13. | 13 Automatic image recognition. Application of artificial intelligence algorithms for analyzing events and A/V scenes. | ||||||||||||||||||||||||||
| 14. | Contemporary trends in the development of methods of signal and image analysis. | ||||||||||||||||||||||||||
| 15. | Contemporary trends in the development of methods of signal and image analysis. | ||||||||||||||||||||||||||
| 16. | Specialization workshop | ||||||||||||||||||||||||||
| 17. | Familiarization with the programming environment and tools for signal and image analysis. | ||||||||||||||||||||||||||
| 18. | Fundamentals of signal analysis: working with digital signals; analysis in the time domain; visualization and interpretation of signals. | ||||||||||||||||||||||||||
| 19. | Time-frequency analysis: creation and interpretation of spectrograms; analysis of non-stationary signals. | ||||||||||||||||||||||||||
| 20. | Signal filtering. | ||||||||||||||||||||||||||
| 21. | Image processing: basic operations on images; histogram analysis; filtering and edge detection. | ||||||||||||||||||||||||||
| 22. | Parameterization of signals and images. | ||||||||||||||||||||||||||
| 23. | Final Project - Part 1. Comprehensive analysis of the selected problem in the field of signal or image processing. | ||||||||||||||||||||||||||
| 24. | Final project - Part 2. Formulation of project assumptions, selection of technology. | ||||||||||||||||||||||||||
| 25. | Final project - Part 3. Implementation. | ||||||||||||||||||||||||||
| 26. | Final project - Part 4. Implementation (cont.). | ||||||||||||||||||||||||||
| 27. | Final project - Part 5. Testing and optimization. | ||||||||||||||||||||||||||
| 28. | Final project - Part 6. Testing and optimization (cont.). | ||||||||||||||||||||||||||
| 29. | Final design - Part 7. Documenting the project. | ||||||||||||||||||||||||||
| 30. | Final project - Part 8. Demonstration of the prototype, presentation of the completed project. | ||||||||||||||||||||||||||
| 31. | Assessment. | ||||||||||||||||||||||||||
| Teaching methods (stationary) |
|||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| Teaching methods (remote) |
|||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| Assessment methods | |||||||||||||||||||||||||||
| L | written exam with test questions<br>Specialization workshop: class reports, development of project tasks carried out in groups, presentation, demonstration | ||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| Assessment conditions | |||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| - | |||||||||||||||||||||||||||
| Symbol of learning outcome |
Intended learning outcomes | Type of tuition during which the outcome is assessed | |||||||||||||||||||||||||
| Knowledge | Skills | Social competences |
|||||||||||||||||||||||||
| Knowledge: the student knows and understands | |||||||||||||||||||||||||||
| E1 | Fundamental concepts and methods of signal and image analysis | ||||||||||||||||||||||||||
| E2 | Principles of analysis in the frequency domain and interpretation of spectra | ||||||||||||||||||||||||||
| E3 | Digital image processing and analysis methods | ||||||||||||||||||||||||||
| Skills: the student can | |||||||||||||||||||||||||||
| E4 | Analyze and interpret signals in the time and frequency domains | ||||||||||||||||||||||||||
| E5 | Apply basic image processing methods | ||||||||||||||||||||||||||
| E6 | Select appropriate methods of analysis to solve specific problems | ||||||||||||||||||||||||||
| Social competences: the student is ready to | |||||||||||||||||||||||||||
| E7 | Critically evaluate the results of signal and image analysis | ||||||||||||||||||||||||||
| Symbol of learning outcome |
Method of learning outcome verification | Form of classes where verification takes place | |||||||||||||||||||||||||
| E1 | Written exam | Lecture | |||||||||||||||||||||||||
| E2 | Written exam | Lecture | |||||||||||||||||||||||||
| E3 | Written exam | Lecture | |||||||||||||||||||||||||
| E4 | Submission of laboratory reports, presentation of the project | Specialization workshop | |||||||||||||||||||||||||
| E5 | Submission of laboratory reports, presentation of the project | Specialization workshop | |||||||||||||||||||||||||
| E6 | Submission of laboratory reports, presentation of the project | Specialization workshop | |||||||||||||||||||||||||
| E7 | Project presentation | Specialization workshop | |||||||||||||||||||||||||
| Basic references | |||||||||||||||||||||||||||
| 1. | K.D. Toennies, Guide to Medical Image Analysis: Methods and Algorithms, Springer Nature, London, 2017 | ||||||||||||||||||||||||||
| 2. | O. Alkin, Signals and Systems: A MATLAB Integrated Approach, CRC Press, Boca Rato, 2014 | ||||||||||||||||||||||||||
| 3. | U. Zölzer (Ed.), DAFX: digital audio effects. John Wiley and Sons, Chichester, 2011 | ||||||||||||||||||||||||||
| Supplementary references | |||||||||||||||||||||||||||
| 1. | M. Fontes, J.D.S. De Almeida, A. Cunha, Application of Example-Based Explainable Artificial Intelligence (XAI) for Analysis and Interpretation of Medical Imaging: A Systematic Review. IEEE Access, vol. 12, pp. 26419-26427, 2024 | ||||||||||||||||||||||||||
| . | - | ||||||||||||||||||||||||||
| Course coordinator: | dr hab. inż. Sławomir Zieliński | Date: | 30/05/2025 | ||||||||||||||||||||||||