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Inspiration

• 10 problems and 3 conjectures

stated by Efim Zelmanov in the paper

Some open problems in the theory of
infinite dimensional algebras ,

J. Korean Math. Soc. 44 (2007), No. 5,
1185-1195.
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Problem 5
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PROBLEM 5 (Zelmanov , 2007)

Is it true that an arbitrary Golod-Shafarevich algebra

has an infinite dimensional homomorphic image

of finite Gelfand-Kirillov dimension?
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Zelmanov’s Problem 5

Theorem (A.S. 2008)
(Glasgow Mathematical Journal, to appear)

Let K be a field of infinite transcendence degree.

Then there is a Golod-Shafarevich algebra R such that

every infinite-dimensional homomorphic image of R has

exponential growth .
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Something old, something new...

It is known that

Golod-Shafarevich algebras have exponential growth.

Theorem (A.S., 2008, Glasgow Mathematical Journal, to
appear)

Non-nilpotent factor rings of generic Golod-Shafarevich
algebras over fields of infinite transcendence degree have
exponential growth , provided that the number of defining
relations of degree less then n grows exponentially with n.
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Golod-Shafarevich theorem

Let Rd be a noncommutative polynomial ring in d variables
over a field K, and let I be the ideal generated by an infinite
sequence of homogeneous elements of degree larger than 1,
where the number of elements of degree i is equal to ri.

If the coefficients of the power series

(1 − dt +

∞∑

i=2

ri ti)−1

are all nonnegative , then

the factor algebra Rd/I is infinite-dimensional .
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Let
• H(t) =

∑∞
i=2 rit

i.

• A = R/I.
• A is graded (each generator has degree 1), so

A(t) =

∞∑

i=1

dimKAit
i.

• Golod and Shafarevich proved that

A(t)(1 − dt + H(t)) ≥ 1.
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It follows that if there is t0 > 0 such that

H(t) =

∞∑

i=2

rit
i

• converges at t0

• and 1 − dt0 + H(t0) < 0,

then A = R/I is infinite dimensional.
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Golod-Shafarevich algebra

We say that Rd/I is a Golod-Shafarevich algebra

if there is a number 0 < t0 such that

H(t) =

∞∑

i=2

rit
i

converges at t0 and 1 − dt0 + H(t0) < 0.
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Great facts

Golod-Shafarevich algebras were used to solve
• the General Burnside problem,

It is known that Golod-Shafarevich algebras have
exponential growth.
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Golod-Shafarevich groups

• Every GS group is infinite.
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Golod-Shafarevich groups

• Every GS group is infinite.

• Zelmanov (2000) showed

that every GS -group contains

a nonabelian free pro-p group

as a subgroup.
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Notation

• Let K be a field, F- the prime subfield of K.

• Let R be a K-algebra.

• Given subsets S,Q of R, denote

S + Q = {s + q : s ∈ S, q ∈ Q}

SQ = {

n∑

i=1

siqi : si ∈ s, qi ∈ Q, n ∈ N}
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Notation

Given a subset S of K.

• F[S] is the field extension of F, generated by
elements from S,

• FS is the linear space over F spanned by elements
from S.

• card(S) is the cardinality of S.
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Lemma

Lemma

Let K be a field, F be a prime subfield of K, let R be a
K-algebra and M be a subset of R.

Let N1 = M and for each i > 1, let Ni be a subset of
FMi such that KMi = KNi.

Denote αi = card(Ni).

Then there are subsets Si ⊆ K such that

S1 = {1}, card(Si+1) ≤ card(Si) + αi+1αiα1

and Mi ⊆ F[Si]Ni for all i.
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Proof

Proof. We will proceed by induction on i.

For i = 1 it is true because N1 = M.

Suppose the result holds for some i.

We will show it is true for i + 1. Observe that Mi+1

consists of finite sums of elements mi+1 = mim1 for

some mi ∈ Mi, m1 ∈ M. By the inductive assump-

tion mi ⊆ F[Si]Ni. Therefore, mi+1 ⊆ F[Si]NiN1. Recall

that NiN1 ⊆ KMi+1 = KNi+1.
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So...

Consequently, every element nin1 with ni ∈ Ni and
n1 ∈ N1 can be written as a linear combination over K

of elements from Ni+1.

nin1 =
∑

ni+1∈Ni+1

kni+1 ,ni,n1ni+1

for some kni+1 ,ni,n1
∈ K.

Denote

Ki+1 = {kni+1,ni ,n1
: ni+1 ∈ Ni+1, ni ∈ Ni, n1 ∈ N1}.
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Observe that...

Observe that

NiN1 ⊆ F[Ki+1]Ni+1.

Denote
Si+1 = Si ∪ Ki+1.

Then,
Mi+1 ⊆ F[Si]NiN1 ⊆ F[Si+1]Ni+1.

Note that card(Si+1) ≤ card(Si) + card(Ki+1), hence

card(Si+1) ≤ card(Si) + αi+1αiα1.
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Let K be a field and let F be the prime subfield of K.

We say that elements

a1, a2, . . . , an are algebraically independent over F

if the algebra generated over F

by elements a1, a2, . . . , an is free.
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Main theorem (A.S.), 2008

Let K be a field, F- the prime subfield of K, let R be a
K-algebra, M- a finite subset of R. Denote α1 = card(M) and

for i > 1, αi = dimKKMi. Let m > 1,n, t be natural numbers
and let x1, . . . , xt ∈ FMm. Assume that there are elements
ki,j ∈ K which are algebraically independent over F and such
that for all i ≤ n we have

t∑

j=1

ki,j xj = 0.

If n > 1 +
∑m

i=2 αiαi−1α1, then

x1 = x2 = . . . = xt = 0.
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Conjecture 3
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Zelmanov’s Conjecture 3, 2007

Let A = A1 + A2 + . . . be a graded algebra generated
by A1, with dimA1 = m and presented by less than m2

4

generic quadratic relations.

Then all but finitely many Veronese subalgebras can
be epimorpically mapped onto the polynomial ring K[t].
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Zelmanov’s Conjecture 3, 2007

Theorem (A.S. 2008, Glasgow Mathematical Journal,
to appear )

Let K be a field of infinite transcendence degree and
let m > 8.

Then there exists a graded algebra A = A1 + A2 + . . .

generated by A1, with dimKA1 = m and presented by
less than m2

4
quadratic relations such that, for every i,

the subalgebra of A generated by Ai cannot be
epimorpically mapped onto the polynomial ring K[t].
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Zelmanov’s Conjecture 3, 2007

It is not known if in arbitrary quadratic

Golod-Shafarevich algebras almost all

Veronese subalgebras can be mapped

onto algebras with linear growth, or onto

a polynomial-identity algebras!
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Some recent results
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Jacobson radical

Theorem (A.S., Bull. London Math. Soc., 2008 )
Let R be a ring, S be a subset of R, and let

P = S + S2 + . . .

be a subring of R generated by S.

Suppose that all n × n matrices with coefficients from
S are nilpotent for n = 1, 2, . . ..
Then

• for all natural numbers n,m, all n × n matrices with
entries from Sm are nilpotent,

• ring P is Jacobson radical.
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Jacobson radical

Theorem (A.S., Bull. London Math. Soc., 2008 )

Over every field K, there is a graded algebra

R = ⊕∞
i=1Ri,

• generated by 2 elements of degree 1,

• which has all homogeneous elements
nilpotent

• and is not Jacobson radical .

Warsaw, 2-8 August, 2009 – p.28/40



Around Regev’s theorem

Theorem (Regev)

Associated graded graded algebras to
algebraic algebras over uncountable fields are
algebraic .

Theorem (A.S., 2008)

Associated graded algebras to

nil algebras need not be algebraic .
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Riley’s question

Open question (Riley)

Are associated graded graded algebras to nil
algebras Jacobson radical?

Theorem (A.S., 2008)

Associated graded algebras to

nil algebras need not be nil .
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More open questions
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Zelmanov’s question

• I. Let K be a field of finite transcendence degree.

Is it true that every Golod-Shafarevich algebra
K-algebra has an infinite dimensional
homomorphic image of finite Gelfand-Kirillov
dimension?
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Zelmanov’s question

• II. Is it true that every finitely presented
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Gelfand-Kirillov dimension?
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Zelmanov’s question

• III. Is it true that in arbitrary Golod-Shafarevich
algebras with all defining relations of degree 2
almost all Veronese subalgebras can be mapped

* onto algebras with linear growth,

or

* * onto a polynomial-identity algebras?
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Golod-Shafarevich proved that if the series

(1 − d t +

∞∑

i=2

ri ti)−1

has all coefficients nonnegative, then

all free algebras in d generators subject to some
relations f1, f2, . . . with ri relations of degree i,

are infinite dimensional.
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Anick’s question

• I. Suppose that the series

(1 − d t +

∞∑

i=2

ri ti)−1

has a negative coefficient.
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Anick’s question

• I. Suppose that the series

(1 − d t +

∞∑

i=2

ri ti)−1

has a negative coefficient.

• Is there a finitely generated algebra in d
generators subject to ri relations of degree i for
i = 1, 2, . . . ?

Warsaw, 2-8 August, 2009 – p.36/40



A quadratic Golod-Shafarevich algebra

is a free algebra in d generators subject to r relations

of degree 2 with 4r < d2.

Then the series

(1 − d t + r t2)−1

has all coefficients nonnegative.

Such algebras are infinite dimensional.
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Anick’s question

• II. Let d be a number.
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Anick’s question

• II. Let d be a number.

• Is there a free algebra in d generators subject to

(1 + d2)

4
or less relations of degree 2 which is finitely
dimensional?
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Zelmanov’s question

• IV. Is it true that every algebra in d generators

subject to less than

d2

4

relations of degree 2 can be mapped onto

a matrix ring over a commutative ring?
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Zelmanov’s question

• IV. Is it true that every algebra in d generators

subject to less than

d2

4

relations of degree 2 can be mapped onto
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♥ ♥ ♥

THANK YOU!

∞ ∞ ∞
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