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Definition

(H. J. Le Roux) For a class y of rings, u* denotes the class of all rings A
such that either A is a simple ring in u or the factor ring A/l is in u for
every nonzero ideal / of A and every minimal ideal M of A is in y.
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Definition

(H. J. Le Roux) For a class y of rings, u* denotes the class of all rings A
such that either A is a simple ring in u or the factor ring A/l is in u for
every nonzero ideal / of A and every minimal ideal M of A is in y.

(H. J. Le Roux and G. A. P. Heyman) If p is a supernilpotent radical, then
so is L’_(p*) and p € L (p*) € p,, .Where Py den.otes ?he upper radical
determined by the class of all subdirectly irreducible rings with
p-semisimple hearts. Moreover, L (G*) = G,, where G is the
Brown-McCoy radical.
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Definition

(H. J. Le Roux) For a class y of rings, u* denotes the class of all rings A
such that either A is a simple ring in u or the factor ring A/l is in u for
every nonzero ideal / of A and every minimal ideal M of A is in y.

(H. J. Le Roux and G. A. P. Heyman) If p is a supernilpotent radical, then
so is L’_(p*) and p € L (p*) € p,, .Where Py den.otes ?he upper radical
determined by the class of all subdirectly irreducible rings with
p-semisimple hearts. Moreover, L (G*) = G,, where G is the
Brown-McCoy radical.

Problem

Is it true that L (p*) = p,, if p is replaced by B, L, N or J, where B, L,
N and J denote the Baer the Levitzki, the Koethe and the Jacobson
radical, respectively?
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Definition

(H. J. Le Roux) For a class y of rings, u* denotes the class of all rings A
such that either A is a simple ring in u or the factor ring A/ is in u for
every nonzero ideal / of A and every minimal ideal M of A is in y.

(H. J. Le Roux and G. A. P. Heyman) If p is a supernilpotent radical, then
so is L’_(p*) and p € L (p*) € p,, .Where Py den.otes ?he upper radical
determined by the class of all subdirectly irreducible rings with
p-semisimple hearts. Moreover, L (G*) = G,, where G is the
Brown-McCoy radical.

Problem

Is it true that L (p*) = p,, if p is replaced by B, L, N or J, where B, L,
N and J denote the Baer the Levitzki, the Koethe and the Jacobson
radical, respectively?

Aim of the talk: To give a negative answer to this question.
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If p is any radical class, then for any A € p*, either A€ p or A€ S (p).
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If p is any radical class, then for any A € p*, either A€ p or A€ S (p).

Let A € p* and suppose that the p-radical p (A) of A is nonzero.
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If p is any radical class, then for any A € p*, either A€ p or A€ S (p).

Let A € p* and suppose that the p-radical p (A) of A is nonzero.
Then A/p (A) € p and, since p (A) € p and p is closed under extensions,
it follows that A € p.
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If p is any radical class, then for any A € p*, either A€ p or A€ S (p).

Proof.

Let A € p* and suppose that the p-radical p (A) of A is nonzero.
Then A/p (A) € p and, since p (A) € p and p is closed under extensions,
it follows that A € p. O

| A,

Corollary

If p is a supernilpotent radical, then for any A € p*, either A€ p orAisa
prime ring.

v
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Let A € p*. Then by Lemma either Ac por A€ S(p).
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Let A € p*. Then by Lemma either Ac por A€ S(p).
If A€ p, then we are done. So assume that A € S (p).
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).
If A€ p, then we are done. So assume that A € S (p).
Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).
If A€ p, then we are done. So assume that A € S (p).
Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.

Let / and J be ideals of A and suppose that /J =0 and / # 0. We will
show that J = 0.
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).
If A€ p, then we are done. So assume that A € S (p).
Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.

Let / and J be ideals of A and suppose that /J =0 and / # 0. We will
show that J = 0.

Since (1N J)*> C 1J =0 and A is a semiprime ring, it follows that
INJ=0.
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).
If A € p, then we are done. So assume that A € S (p).
Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.

Let / and J be ideals of A and suppose that /J =0 and / # 0. We will
show that J = 0.

Since (1N J)*> C 1J =0 and A is a semiprime ring, it follows that
INJ=0.

But (/4 J) /1 is an ideal of A/l and A/ I € p because [ is a nonzero ideal
of Aand A € p*.
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).
If A € p, then we are done. So assume that A € S (p).
Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.

Let / and J be ideals of A and suppose that /J =0 and / # 0. We will
show that J = 0.

Since (1N J)*> C 1J =0 and A is a semiprime ring, it follows that
INJ=0.

But (/4 J) /1 is an ideal of A/l and A/ I € p because [ is a nonzero ideal
of Aand A € p*.

Thus, since p being a supernilpotent radical is hereditary, it follows that

(I+J)/1€p.
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).

If A € p, then we are done. So assume that A € S (p).

Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.

Let / and J be ideals of A and suppose that /J =0 and / # 0. We will
show that J = 0.

Since (1N J)*> C 1J =0 and A is a semiprime ring, it follows that
INJ=0.

But (/4 J) /1 is an ideal of A/l and A/ I € p because [ is a nonzero ideal
of Aand A € p*.

Thus, since p being a supernilpotent radical is hereditary, it follows that
(I+J)/1€p.

But (I+J) /I ~J/(INJ)~Jsince INJ=0. Thus J € p.
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Proof.

Let A € p*. Then by Lemma either Ac por A€ S(p).

If A € p, then we are done. So assume that A € S (p).

Then, since p is a supernilpotent radical, A is a semiprime ring. We will
now show that A is, in fact, a prime ring.

Let / and J be ideals of A and suppose that /J =0 and / # 0. We will
show that J = 0.

Since (1N J)*> C 1J =0 and A is a semiprime ring, it follows that
INJ=0.

But (/4 J) /1 is an ideal of A/l and A/ I € p because [ is a nonzero ideal
of Aand A € p*.

Thus, since p being a supernilpotent radical is hereditary, it follows that
(I+J)/1€p.

But (I+J) /I ~J/(INJ)~Jsince INJ=0. Thus J € p.

On the other hand, since S (p) is hereditary and J < A € S (p), it follows
that J € S (p). Thus J € pNS (p) = {0} which implies that J =0. [

v
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Definition

A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.
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Definition

A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.

Theorem

| \

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,

N
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A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.

Theorem

| \

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let x > 1
be a cardinal number greater than the cardinality of A

N
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ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.
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| \

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let x > 1
be a cardinal number greater than the cardinality of A and let W (x) be
the set of all finite words made from a (well-ordered) alphabet of
cardinality x, lexicographically ordered.
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Definition

A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.

Theorem

| \

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let x > 1
be a cardinal number greater than the cardinality of A and let W (x) be
the set of all finite words made from a (well-ordered) alphabet of
cardinality x, lexicographically ordered. Then W (k) is a semi-group with
multiplication defined by xy = max {x, y} and we have the following
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Definition

A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.

Theorem

| \

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let x > 1
be a cardinal number greater than the cardinality of A and let W (x) be
the set of all finite words made from a (well-ordered) alphabet of
cardinality x, lexicographically ordered. Then W (k) is a semi-group with
multiplication defined by xy = max {x, y} and we have the following

@ The semigroup ring A(W (x)) is a subdirect sum of copies of A.
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Definition

A ring A is prime essential if and only if A is semiprime and no nonzero
ideal of A is a prime ring. In what follows the class of all prime essential
rings will be denoted by £.

| \

Theorem

(B. J. Gardner, P. Stewart) Let A be a nonzero semiprime ring,let x > 1
be a cardinal number greater than the cardinality of A and let W (x) be
the set of all finite words made from a (well-ordered) alphabet of
cardinality x, lexicographically ordered. Then W (k) is a semi-group with
multiplication defined by xy = max {x, y} and we have the following

@ The semigroup ring A(W (x)) is a subdirect sum of copies of A.
Q@ A(W (x)) is prime essential.

© Every prime homomorphic image A(W (x)) /Q of A(W (x)) is
isomorphic to some prime homomorphic image A/ P of A.

N
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(B. J. Gardner, P. Stewart) A supernilpotent radical p is a special radical if
and only if every prime esssential p-semisimple ring is a subdirect sum of
prime p-semisimple rings.
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(B. J. Gardner, P. Stewart) A supernilpotent radical p is a special radical if
and only if every prime esssential p-semisimple ring is a subdirect sum of
prime p-semisimple rings.

Definition

A prime ring A is called a *-ring if A/I € B for every 0 # | < A.
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(B. J. Gardner, P. Stewart) A supernilpotent radical p is a special radical if
and only if every prime esssential p-semisimple ring is a subdirect sum of
prime p-semisimple rings.

Definition
A prime ring A is called a *-ring if A/I € B for every 0 # | < A.

If p is a supernilpotent radical whose semisimple class S (p) contains a
nonzero nonsimple x-ring without minimal ideals, then L (p*) is a
nonspecial radical and consequently L (p*) # p,,.
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Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).
Let ¥ > 1 be a cardinal number greater than the cardinality of A
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that o is a weakly special class.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that ¢ is a weakly special class. Thus ¢ C S (U (0)).
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that o is a weakly special class. Thus ¢ C S (U ()). It therefore suffices
to show that A (W (x)) has no nonzero ideals in p*.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that o is a weakly special class. Thus ¢ C S (U ()). It therefore suffices
to show that A(W (x)) has no nonzero ideals in p*. Suppose
0#1<<A(W (x)) and | € p*.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that o is a weakly special class. Thus ¢ C S (U ()). It therefore suffices
to show that A(W (x)) has no nonzero ideals in p*. Suppose
0#1<<A(W (x)) and | € p*. Then it follows from Corollary that either
I € porlisa prime ring.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that ¢ is a weakly special class. Thus 0 C S (U (0)). It therefore suffices
to show that A(W (x)) has no nonzero ideals in p*. Suppose
0#1<<A(W (x)) and | € p*. Then it follows from Corollary that either
I € por | is a prime ring. But none of the two cases can occur because

041 <aAW (x)) and A(W (x)) € S (o) NE.
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Proof.

Let p be a supernilpotent radical and let a nonzero nonsimple *-ring A
without minimal ideals be in S (p). Then A€ p* NS (p).

Let ¥ > 1 be a cardinal number greater than the cardinality of A and let
A (W (x)) be the semigroup ring constructed in Theorem 3. Then, by
Theorem 3, A(W (x)) is prime essential and A (W (x)) is a subdirect sum
of copies of A. But, since A € S (p), it follows that A(W (x)) € S (p)
because S (p) is closed under subdirect sums. So A (W (x)) € S (p) N E.
We will now show that A (W (x)) € S (L (p*)).

It follows from Le Roux Theorem 2 that £ (p*) = U (¢), where ¢ is the
class of all rings without nonzero ideals in p*. Since p is a supernilpotent
radical, it follows from Le Roux Lemma 3 that p* is hereditary and it
contains all the nilpotent rings. Then it follows from Le Roux Theorem 1
that ¢ is a weakly special class. Thus 0 C S (U (0)). It therefore suffices
to show that A(W (x)) has no nonzero ideals in p*. Suppose
0#1<<A(W (x)) and | € p*. Then it follows from Corollary that either
I € por | is a prime ring. But none of the two cases can occur because
0#1<<A(W (x)) and A(W (x)) € S(p)NE. Thus A(W (k)) € o and
conseguently A (W (x 0*
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Proof.

Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N, where 7t denotes the class of all prime
rings.
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Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N, where 7t denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /.

Halina France-Jackson (Institute) On special and nonspecial radicals July 7, 2009 8 /11



Proof.

Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N 7T, where 7T denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A.
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Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N 7T, where 7T denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A. Thus 0 # A/P € 7t and, as A is a nonzero *-ring, it follows that
P=0.
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Proof.

Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N 7T, where 7T denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A. Thus 0 # A/P € 7t and, as A is a nonzero *-ring, it follows that

P =0. Thus A(W (x)) /Iy ~ A and consequently A € S (L (p*)).
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Proof.

Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N 7T, where 7T denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A. Thus 0 # A/P € 7t and, as A is a nonzero *-ring, it follows that

P =0. Thus A(W (x)) /Iy ~ A and consequently A € S (L (p*)). On
the other hand, A € p* C L (p*).
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Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N, where 7t denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A. Thus 0 # A/P € 7t and, as A is a nonzero *-ring, it follows that

P =0. Thus A(W (x)) /Iy ~ A and consequently A € S (L (p*)). On
the other hand, A € p* C L (p*). Thus

0#£#Ac L(p*)NS(L(p*)) = {0} and we have a contradiction.
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Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N, where 7t denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A. Thus 0 # A/P € 7t and, as A is a nonzero *-ring, it follows that

P =0. Thus A(W (x)) /Iy ~ A and consequently A € S (L (p*)). On
the other hand, A € p* C L (p*). Thus

0#£#Ac L(p*)NS(L(p*)) = {0} and we have a contradiction. Thus
L (p*) is a nonspecial radical.
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Proof.

Now, if £ (p*) were a special radical, then by Theorem 4, A(W (x))

would contain a family {/,},., of ideals /) such that N/} = 0 and
AEA

AW (x)) /Iy € S(L(p*)) N, where 7t denotes the class of all prime
rings. Consequently, A (W (x)) /Iy would be a nonzero prime
homomorphic image of A(W (k)) for at least one /,. Then it follows from
the third part of Theorem 3 that A(W (x)) /Iy ~ A/ P for some ideal P
of A. Thus 0 # A/P € 7t and, as A is a nonzero *-ring, it follows that

P =0. Thus A(W (x)) /Iy ~ A and consequently A € S (L (p*)). On
the other hand, A € p* C L (p*). Thus

0#£#Ac L(p*)NS(L(p*)) = {0} and we have a contradiction. Thus
L (p*) is a nonspecial radical. Now, since P, is a special radical, it follows

that £ (p*) # p,, which ends the proof. O
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Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism.
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Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i.

Halina France-Jackson (Institute) On special and nonspecial radicals July 7, 2009 9 /11



Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ap + zay + z%ay + ... + z"a,, where a; € F.
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authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a.
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X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.
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(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m.
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(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S].
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the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S]. Then F [z, S] is a
noncommutative integral domain
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(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S]. Then F [z, S] is a
noncommutative integral domain and its every ideal / is of the form

| = zKR = Rz for some positive integer k.
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(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
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numbers alone and which sends x; into x;1 for every i. Let R be the set
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such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S]. Then F [z, S] is a
noncommutative integral domain and its every ideal / is of the form

| = zKR = Rz* for some positive integer k. Moreover, F [z, S] is a
primitive ring
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(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S]. Then F [z, S] is a
noncommutative integral domain and its every ideal / is of the form

| = zKR = Rz* for some positive integer k. Moreover, F [z, S] is a
primitive ring and its subring T = zR is not simple,
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(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S]. Then F [z, S] is a
noncommutative integral domain and its every ideal / is of the form

| = zKR = Rz* for some positive integer k. Moreover, F [z, S] is a
primitive ring and its subring T = zR is not simple, it does not contain
minimal ideals
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Example

(E.Sasiada, A.Sulinski) Let F be a field of characteristic 0 which has an
authomorphism S such that no integral power of S is the identity
automorphism. For example, F might be a field generated by the real
numbers and an infinite number of independent variables labelled ...
X_2,X_1,X0, X1, X2, ... and S the automorphism which leaves the real
numbers alone and which sends x; into x;1 for every i. Let R be the set
of all polynomials in an indeterminate z of the form

ag + za1 + z%a> + ... + z"a,, where a; € F. Addition and multiplication of
such polynomials is defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is
the image of a under the authomorphism S.Then az™ = z5™ (a) for any
positive integer m. Then this definition, together with the distributive law,
makes R into a ring denoted by F [z, S]. Then F [z, S] is a
noncommutative integral domain and its every ideal / is of the form

| = zKR = Rz* for some positive integer k. Moreover, F [z, S] is a
primitive ring and its subring T = zR is not simple, it does not contain
minimal ideals and every proper homomorphic image of T is a nilpotent

No
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If p is replaced by B, L, N or J, then p & L (p*) & [
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Corollary

If p is replaced by B, L, N or J, then p & L (p*) & [

Proof.

It is well known that B, £, N and J are special radicals and B C L C N
cJ.

| \

.
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Corollary

If p is replaced by B, L, N or J, then p & L (p*) & [

Proof.

It is well known that B, £, N and J are special radicals and B C L C N
C J. Let T be the ring of Example.

| \

.
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Corollary

If p is replaced by B, L, N or J, then p & L (p*) & [

Proof.

It is well known that B, £, N and J are special radicals and B C L C N
C J. Let T be the ring of Example. Clearly, T is a nonzero nonsimple
*-ring without minimal ideals.

| \

.
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Corollary

If p is replaced by B, L, N or J, then p & L (p*) & [

| A

Proof.
It is well known that B, £, N and J are special radicals and B C L C N
C J. Let T be the ring of Example. Clearly, T is a nonzero nonsimple
*-ring without minimal ideals. Moreover, since T is an ideal of the
primitive ring F [z, S] and the class of all primitive rings is hereditary, it
follows that T is primitive

.
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Corollary

If p is replaced by B, L, N or J, then p & L (p*) & [

| A

Proof.
It is well known that B, £, N and J are special radicals and B C L C N
C J. Let T be the ring of Example. Clearly, T is a nonzero nonsimple
*-ring without minimal ideals. Moreover, since T is an ideal of the
primitive ring F [z, S] and the class of all primitive rings is hereditary, it
follows that T is primitive andso T € S (J) CS(N) C S (L) C S (B).

.
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Corollary

If p is replaced by B, L, N or J, then p & L (p*) & [

Proof.

It is well known that B, £, N and J are special radicals and B C L C N
C J. Let T be the ring of Example. Clearly, T is a nonzero nonsimple
*-ring without minimal ideals. Moreover, since T is an ideal of the
primitive ring F [z, S] and the class of all primitive rings is hereditary, it
follows that T is primitive andso T € S (J) CS(N) C S (L) C S (B).
Now the result follows directly from Theorem Ol

v

| A
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