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In the chapter, we discuss how medical image analysis can take advantage of
computational modeling. First, a general framework of model-based approach is
presented, whose objective is enabling to relate external descriptions to internal
processes, which originate them. Two coupled models i.e. model of an organ
under study and model of an imaging modality, constitute main components of
this framework. Then, a few applications of the presented approach are described.
Two vital abdominal organs, namely liver and kidney, are considered and their
typical pathological processes connected with significant vascular modifications
are analyzed. Resulting patterns are observed by means of dynamic Computed
Tomography, when contrast material injection and propagation are simulated.
Texture features are extracted from regions of interest defined in simulated images
in different acquisition conditions. Studying evolution of features allows us to
better understand both advantages and limitations of texture analysis and is
very helpful in proper medical image interpretation.

Keywords: Computational modeling; vascular network; image simulation; bipha-
sic computed tomography; compartmental model; hepatic enhancement; texture
analysis

1. Introduction

Modeling is an extremely wide field where each discipline can find its place by
adapting the generic concepts to the building of its own models. A very complete
theory of modeling and simulation is given in Ref. 1. In this chapter, we confine
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ourselves to the field of life sciences, and more especially to medical imaging. In
biology and medicine, some observation systems allow analyzing finer and finer
phenomena, which are really the disease causes and not only its anatomic and
functional consequences. Indeed micro-imaging modalities provide insight into cells,
chromosomes and genes2. However, non invasive examinations realized in clinical
routine are generally still macroscopic, and they are used to detect and characterize
a disease, through markers that generally are a complex mixture of parameters
situated at inferior physiological levels. Going from one level to the other one is a
key point in the early detection of pathology, and therefore in the definition of an
efficient treatment. It then constitutes a main issue and it is the objective of a great
number of works in the biomedical field.

Modeling can participate to the setting up of bridges between these different ob-
servation levels, by extracting, at the macroscopic level, information representative
of the level capable of explaining pathology3. This task can be achieved only if the
abstraction level of the model is well chosen4. Parameters related to the physiolog-
ical phenomena one wants to analyze and to understand, have to be integrated in
the model. One of the main difficulties in a model design is the necessity to capture
the essential properties of the system, without dealing with elements whose role is
minimal in its functioning. These essential elements are not always identified before
the model conception, and may be revealed during its definition. This is especially
the case for living systems whose structural and functional complexity is generally
great. This complexity is due to the important number of components (all the more
numerous since the level of description is high) and to their connections.

Methodology of modeling is chosen taking into account the knowledge we have
on the physiological system and the way we want to use the model. For instance,
the approach for generating the model will be different if the objective is to explain
the system functioning, or only to reproduce it5. In the first case, a “knowledge
based” model will be designed by considering a priori knowledge (i.e. physical and
physiological principles followed by the system), modeling purpose and experimen-
tal data. In the second case, the “data driven” or “black box” model is derived
from collected experimental data, and consists in a mathematical description of the
system, without explicit correspondence with underlying physiological processes.

In both preceding cases, a simulator is used to generate the model behavior.
Simulations are useful during the model building, to precise its structure or adjust
parameters. This is the necessary step of model validation. Several definition of
validity can be found. Zeigler says that a model is valid (replicative validity) if
“for all the experiments possible within the experimental frame, the behavior of
the model and system agree within acceptable tolerance”1. In the field of biology
and medicine, the validity of a model can be sometimes difficult to assess because
data collection can be impossible or very difficult to realize. When the model is
completed and validated, simulations are used in order to better understand the
system, and especially how it would work in particular conditions that can not be
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easily tested in reality (prediction).
System specification formalisms are proposed in Ref. 1 considering continuous

and discrete systems. Simulators are also presented for these approaches. In Ref. 5
Carson and Cobelli introduced a methodology for the development of mathemati-
cal models in physiology and medicine. It is illustrated, for instance, on modeling
circulatory and respiratory systems. Mathematical models of physiological systems
(circulatory, respiratory, renal, muscular, neural) and population dynamics are also
described in Ref 6.

In this chapter we present a model-based approach to medical image analysis,
whose objective is to relate external descriptions to internal processes or systemic
behaviors, which originate them. A general framework7 corresponding to this ap-
proach is displayed in Fig. 1.

Virtual
space

Physical
space

Organ
model

Organ

Images
3D/2D/t

Object space Image spaceSensor space Decision space

Virtual
imaging
system

Synthesis

Imaging
device Observation Analysis

Shape/function
characterization

Acquisition
protocol

Detection/Identification of diseaseAction

Model
adjustment
(parameters
estimation)

Model
purpose

Physiopathological
knowledge

Relations feature - physiopathology

Comparison

Shape/function
characterization

Analysis

Comparison

Sim.
images
3D/2D/t

Acquisition
protocol

Fig. 1. General framework of model-based approach to medical image analysis.

Any attempt devoted to design in-depth model-based representations, as op-
posed to more widely used external descriptions, has to rely on the basic mechanisms
originating the objects (i.e. tissues, organs or systems) under study, the environ-
mental conditions in which they develop (i.e. functional interactions and spatial
constraints for instance) and the deviations that can occur during their formation
or after (reflecting inter-individual variations as well as pathological evolutions). All
these features are included into the “object space” depicted in Fig. 1. The sensing
device, specified here as “virtual imaging system” must also be modeled in a real-



4

istic way in order to simulate sound images. This task involves taking into account
the physical principles of the imaging modality and the image reconstruction al-
gorithms (both being merged into the “sensor space”) leading to image formation
as well as the distortions they both convey. Any imaging device can be considered
according to the organ properties to be analyzed. These two objectives are very
challenging as such but it is the only way to get a really relevant “image space”. So
produced virtual data can then be submitted to any image analysis method capable
to answer to the given objectives. Such processing can be oriented toward mor-
phological or structural studies and focused, among many others, on segmentation
and characterization tasks (static 2D or 3D images). They can deal with functional
features when time stamped images are generated (i.e. time image sequences) using
motion estimation or compartment models when they are of concern. The overall
system output belongs to what is called the “decision space”, which may rely on any
pattern recognition methods (statistical data analysis, neural networks, ...). From
this standpoint, a full matching, where the same views operate, can be proposed by
considering the “virtual space” and its dual, the “physical space”.

A number of highly meaningful concepts can then be projected onto this 2 by
4 matrix. A few ones (classical feedback being still valid) are exemplified here.
The first one corresponds to the capability at each step to compare the real and
virtual outcomes either at a visual level or through quantitative characteristics. For
example, local and global statistical measures can be performed on the simulated as
well as on in-vitro or in-vivo data. They can bring new cues for model building and
adjustment (initialization conditions, error criteria, ...). Similar feature extraction
(distances, volumes and shape descriptors, ...) can be achieved into the image planes
issued from virtual and physical imaging devices.

The second concept emphasizes the possibility to link directly the decision space
(and the extracted features) to relevant pathophysiological patterns: this opens the
road towards explanative analysis or physiologically founded understanding of image
features. It allows replacing formal parameters by variables with a structural or
functional meaning. Direct or inverse problems are here of main interest if it can be
proven that the corresponding system is identifiable. However, a pragmatic solution
consisting in estimating the linear or non linear relations between the measures and
the underlying, fully controlled, physiological variables can be of value in the first
step.

Moreover, through these simulation capabilities, the impact of changing the
acquisition parameters (for instance the spatial resolution, the time windows and
delays) on the “decision space” can be objectively anticipated. For instance, in-
stead of making use of simple shaped phantoms with additive noise to evaluate
the performances of detection, segmentation, reconstruction algorithms among oth-
ers, realistic objects with varying observation conditions can lead to more robust
conclusions. Appropriate protocols can then be derived in a predictive way.

To summarize, model-driven acquisition, analysis and interpretation are offered
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by such a generic frame. Of course, its relevance goes well beyond the imaging field
here addressed. The same views can be applied to model-based signal processing8

or biology9. An instantiation of this conceptual approach will be described in the
following sections. The object is then the abdominal organ with its vascular network
which is modeled at each step of its development, with structural, morphological
and functional information. The selected sensing device is a standard Computed
Tomography scanner providing 3D observations and time-stamped image sequences
when contrast material propagation is considered. The image analysis deals with
texture characterization (emphasizing the need for feature meaning).

2. Model-based approach for image understanding

Modeling almost always means simplification and specialization. It should be em-
phasized that the presented organ model is oriented toward image generation and
cannot be treated as a general purpose model of the organ. The proposed model is
concentrated on elements which are directly visible on images or are closely related
to the pattern formation process. Vessels play the key role in a contrast material
propagation and they are one of the most visible structures on dynamic CT scans
of abdominal organs. It is why the vascular system is very important component of
the organ model.

2.1. Physiological organ modeling

In its generic form, the model is designed to simulate the development and patho-
logical changes of extensive, parenchymous organs. It is assumed that such organs
are able to increase their size during the growth phase by consecutive divisions of
structural units (process of hyperplasia)10.

The organ model consists of two main components: the tissue and the vascular
network that perfuses it, and adapts to its local geometry. Most of model features
are not linked with any particular organ, however, when we deal with the given
organ some kind of specialization can be necessary to properly express its specificity.
Liver is a good example of such a situation, because of its unique organization of
the vascular network with three trees: hepatic artery, portal vein and hepatic vein.

The changes in the size and the structure of the organ and the corresponding
vascular structures operate at discrete time instants called cycles (and subcycles).
The overall flow chart (Fig. 2) depicts the main events, which can be distinguished
in the model realization of the organ development process.

2.1.1. Tissue modeling

Tissue is represented by a set of Macroscopic Functional Units (MFU) distributed
inside a 3D volume, which constitutes external organ shape. This shape can be
defined analytically or can be reconstructed (e.g. based on series of CT scans). Two
phases (growing phase and adult phase) can be distinguished. They are directly
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Fig. 2. Flow chart representing two loops of events which are distinguished in modeling of the
organ (tissue and vascular network) development.

connected with the shape size changes. In the growing phase, the process starts
with an organ, whose size is a small fraction of the one of an adult organ, and
which expands gradually until it reaches the maximum size. In this moment the
adult phase starts and the size of the organ remains invariable. Concerning the first
phase, there exist a few possible ways of generating growing organ envelopes. The
most precise one would use series of real data acquired at different ages, which is
however hard to achieve in clinical practice. Therefore a single exam is processed to
reconstruct the adult organ, which is then transformed to create the smaller shapes.
This can be performed by either mathematical morphology operations (erosion,
dilation) or simple scaling.

MFU is a small, fixed size part of the tissue, which spatial position is given rela-
tively to the shape and does not change with the organ growth. Most of functional
and structural properties of MFU are defined by its class e.g.:
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• probabilities of mitosis Pm and necrosis Pn, which are essential in the pro-
liferation process. Usually Pn is lower than Pn, especially when the organ
is young. In fact, both probabilities are sensitive to time and they decrease
with the age of MFU (exponentially decreasing functions)11.

• metabolic needs (blood flow rate),
• blood pressures,
• density, which is closely linked to attenuation coefficient calculated during

virtual imaging,
• size and other geometrically oriented parameters.

Certain parameters associated with the MFU class are described by their distrib-
ution and they are randomly chosen for each new MFU. This mechanism allows
modeling the natural variability of the terminal blood flow in MFUs.

Several classes of MFUs are defined to differentiate functional (or pathological)
regions of the tissue. For example, in normal kidneys one class corresponds to cortex
and the other to medula.

In normal conditions, the class of MFU generally remains unchanged during all
the life of the MFU, but in pathological situations this is not the case. A mecha-
nism of conversions was introduced into the model to enable an initialization of the
distinct region by a substitution the MFU class. Each conversion represents the pe-
riod when the current class of MFUs inside the defined volume (e.g. sphere) can be
changed (with the given probability) to another class. Conversions can be arranged
in sequences and can also operate in a parallel way. The sequence of conversions
enables to simulate for example various stages of lesion development, when charac-
teristics of infected region evolve gradually in time. Moreover, parallel conversions
operating in separate parts of the organ allow modeling multiple lesions (e.g. spread
of tumor in form of metastasis). After the initialization of the pathological region by
using conversion mechanism, the disease develops leading to changes in the vascular
system of the organ.

2.1.2. Vascular network modeling

Individual parts of the whole vascular system are very diverse and their specificity
should be taken into account during the modeling12. For example, transportation
function dominates in main arteries delivering blood to organs and geometry of
vessels is highly dependent on anatomy of the organism. Another situation can be
observed in case of perfusion of abdominal organs like kidneys, where the most
important task is filtration. In such a case location of specific vessels is not crucial,
but spatial vessels density must be high enough to enable functioning of the organ.

There exists several vascular models and they differ considerably from one to the
other. The models concern different organs and they were designed with completely
distinct aims and level of details. One of the first proposals based on physiologi-
cal mechanisms was described by Gottlieb13. As a result of an iterative algorithm
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inspired by angiogenesis process a fractal structure of a vascular tree is created.
This model was then refined and formalized in Ref. 14. Schreiner and Buxbaum
proposed another method for an arterial tree generation, which they called Con-
strained Constructive Optimization (CCO)15. The tree develops by sequentially
adding new bifurcations to the existing vascular structure. The optimal position of
bifurcation point is searched to minimize volume of the whole tree.

Recently aforementioned two-dimensional models were replaced by much more
realistic three-dimensional models. The one proposed by Bézy-Wendling11 enabled
growth of an arterial tree inside simple, analytically defined and gradually expanding
volume16. New simulated cells, which appear during the growth of the organ, are
perfused sequentially by newly created vessels. In Ref. 17 CCO method was extended
in order to model an arterial tree development inside a 3D volume imitating an
organ. Improved CCO was applied to simulate the coronary artery.

In the presented model, each vessel segment (part of vessel between two con-
secutive bifurcations) is represented by an ideal, rigid tube with fixed radius, wall
thickness and position. It was assumed that the wall thickness depends on vessels
diameter and its function (arteries have thicker walls than veins). In the model, all
vessels until the level of capillaries are distinguishable. On the contrary the geom-
etry of capillaries is not considered, these smallest vessels being “hidden” in the
MFU. Based on morphometrical investigation dealing with bigger vessels (e.g. con-
ducted by Zamir18), it is assumed that a single vascular structure has a form of a
binary tree (Fig. 3). It means that anastomosis, which occurs sometimes, especially
in pathological situations, cannot be modeled.

DP Q, r, l

Q , r , lr r r
Q , r , ll l l

Fig. 3. A binary vascular tree is composed of successive bifurcations.

One of the most important assumptions concerns the blood flow. Blood is re-
garded as a Newtonian fluid with constant viscosity (µ), whose flow is governed by
Poiseuille’s law:

∆P = Q
8µl

πr4
, (1)

where P - stands for blood pressure, l - vessel length, r - radius. It enables to
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calculate the difference of blood pressure between the ends of segment based on
blood flow and geometry of the vessel. The physical law, which has to be verified
at each bifurcation, is the elementary law of matter preservation:

Q = Qr + Ql, (2)

where Ql (Qr) denotes the blood flow in left (right) descendant vessel respectively.
It means that the quantity of blood, which enters a bifurcation by the father vessel,
leaves it by the two sons vessels. Another constraint that has to be fulfilled in the
bifurcation deals with radii of vessels. This relationship was established empirically
and is known as the bifurcation law:

rγ = rγ
r + rγ

l , (3)

where rr (rl) denotes radius of right (left) descendant vessel respectively and γ

varies between 2 and 3 19,18. Based on this observation it is possible to estimate the
radius of the ancestor vessels using radii of descendant vessels.

Assuming that positions of all vessels are fixed, it is necessary to assure the
consistency of the characteristics (i.e. blood flow and pressures, ...) describing indi-
vidual vessels. The vascular tree is consistent if: i) it has the same blood pressure
and fixed blood flow in all terminal vessels attached to MFUs, ii) the Poiseuille law
in each vessels, matter preservation and bifurcation laws in each bifurcations are
fulfilled. A computationally effective method for the consistency assurance in the
vascular tree is described in Ref. 20.

new MFU

candidate

vessels

candidate

vessels

HA

PV

HV

Fig. 4. Perfusion process of newly created MFU by hepatic vascular network. The optimal con-
figuration of vessels is chosen depending on minimal volume principle.

Newly appeared MFUs are initially ischemic, because they are not perfused by
the existing vascular network. The MFU signals this by secreting some angiogenic
factors. In response to this biochemical stimulus the closest vessels (called candidate
vessels) sprout toward the source of the stimulation. The stimulation disappears
when the first vessel (in each tree) reaches the MFU and consequently remaining
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new vessels retract. Geometry of a newly created bifurcation is controlled by local
minimization of additional blood volume needed for the MFU perfusion. In order
to find out the optimal configuration, each candidate vessel temporarily creates a
bifurcation perfusing the MFU and the configuration volume is calculated (Fig. 4).
Additionally, the problem of avoiding possible collisions between perfusing vessels
has to be taken into account. It concerns both intersection of vessels coming from
the same tree and also, what is especially important, crossing among arteries (ar-
terioles) and veins (venules). In the adapted, simple approach, only non-crossing
configurations are considered. Finally, the configuration of new bifurcations from
all the trees with the lowest sum of volumes permanently perfuses the MFU. The
detailed description of the aforementioned process in case of the two trees can be
find in 7.

The development of a pathological process (e.g. tumor) is usually related with
changes of functional and structural properties of the tissue, which often entail
modifications of vascular structures. These changes are obtained by means of the
conversion mechanism introduced in the tissue modeling part. Examples of these
connected phenomena will be given in the next section.

2.2. Imaging modality modeling

The second step of the methodology consists in simulating the physical process
underlying the image formation. The methodology is illustrated on CT, but other
imaging modalities (Magnetic Resonance Imaging or Ultrasound) fit to this frame-
work. CT has been chosen due to its wide use and the flexibility it offers to control
the image conditioning21. Variations of the main acquisition parameters (resolution
and slice thickness for instance) lead to different appearances of the structures un-
der study. The main steps of CT acquisition modeling based on a simulated organ
are depicted in Fig. 5.
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Fig. 5. CT scan-like images of simulated organ are generated from a 3D-density representation
created at a given time moment, after injection and propagation of contrast product.
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2.2.1. Contrast material propagation

A cross-sectional slice of the organ has to be represented in the image. Each voxel
of the model volume is associated with a density value so that the resulting 2D
image will display the usual CT numbers (the gray level in each pixel of the image
is proportional to the CT number of the voxel in the appropriate position).

To create the 3D density representation of the organ, after injection of the con-
trast material, the concentration evolution has to be known in all vessels and MFUs.
In the following description of the contrast product propagation, we consider the
most general case of a vascular network made of three trees (like in the liver). In
order to simplify the calculation, the concentration is supposed to be constant in
each vessel segment and the blood is ideally mixed with the contrast material. In
clinical practice the contrast material (CM) is infused intravenously (e.g. in an an-
tecubital vein) and after the bolus transfer time it enters the liver, first through the
hepatic artery (HA) and then, with a certain delay, through the portal vein (PV).
Modeling separately the infusion for the HA and the PV sources, by providing the
CM concentration curves at these two entries, gives more flexibility in the simula-
tion of mono or bi-phasic injection with varying conditions (e.g. duration, amount
of CM) or features specific to a patient (e.g. delay between HA and PV).

CB CO2

CO1Dt1

Dt2

CBCI2

CI1 Dt1

Dt2

Q1

Q2

a) b)

Fig. 6. Propagation of contrast material through bifurcations.

As far as the propagation in the macroscopic network is concerned, the contrast
product concentration can be computed at each time t, given the concentration in
vessels situated upstream (see Fig. 6):

CB(t) = CO1(t + ∆t1) = CO2(t + ∆t2) (4)

The time needed by blood to traverse a vessel can be calculated using its length
l, radius r and the blood flow Q in it:

4t =
πr2l

Q
(5)

The situation is more complicated when a vessel junction is considered. For the
hepatic veins, the concentration at the bifurcation CB is weighted by the corre-
sponding blood flows:

CB(t) =
Q1CI1(t−∆t1) + Q2CI2(t−∆t2)

Q1 + Q2
. (6)
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The propagation of blood and CM through capillaries is a complex process. Two
models with different level of simplification can be used to simulate this process.
The first one is the queue model originally proposed in Ref. 22. In a MFU, the
volume of capillaries and extracellular space (which is defined as a fraction of the
MFU volume) is divided into sections, whose size corresponds to the quantity of
blood exchanged during the time interval imposed by the temporal resolution. The
concentration of the first section is calculated as weighted concentrations (according
to the corresponding blood flows) of the two inputs. The organization of MFU is
based on a fixed-size queue (FIFO): at each time, the sections concentrations are
shifted. The overall concentration of CM in the MFU is computed as an average
concentration of sections. This process is illustrated in Fig. 7. Calculation of the
contrast material concentration is depicted at two time moments: arterial phase,
when contrast material arrives only through the hepatic artery without contribution
of portal vein (left), and portal phase where the contribution of the portal vein is
equivalent to the one of the artery (right). For example, on the left top scheme,
the CM concentration is 1.0 (maximum possible value) in HA and 0.0 in PV. The
resulting value of the first sections concentration is computed by taking into account
the respective supplies of HA (1/3 of the total flow) and PV (2/3). The mean
concentration of the first section is then 0.33 at time t0. The blood of the first
section is then shifted to the next one at time t0 +∆t (left–bottom). In this scheme,
the global MFU concentration of CM (0.22) is the mean of the 4 sections (0.33,
0.33, 0.2, 0.0). Right part illustrates the similar process when CM arrives also in
PV.
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Fig. 7. Queue model of contrast material propagation in MFU

The other approach for the simulation of CM propagation at the microvascular
level is based on a compartment model23. Recently, this kind of models have been
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applied to simulate vessels/tissue exchanges24,25,26 or to estimate perfusion and
capillary permeability27. In contrast to some global models, the presented model is
local, takes into account the portal circulation, and integrates liquid movements (not
only molecules transfer). Moreover, the direct coupling between this microvascular
model and the macro-vascular one allow us to generate not only enhancement curves,
but also dynamic enhanced images.

Fig. 8. Three compartment microscopic model used to simulate hepatic transvascular exchanges

The model entries are two blood supplies coming from hepatic arteriole and
portal venule. They are characterized by their flows Qha(t) and Qpv(t) and contrast
product concentrations, Cha(t) and Cpv(t). The three compartments of the model
are depicted in Fig. 8: “sinusoids”, “extracellular space” and “hepatic venules”.
Blood arriving in the sinusoids is mixed with contrast medium at the concentration
Cs(t) and goes through the capillary wall into the extracellular space with the flow
F (t). Plasma and contrast medium molecules can go out of the extracellular space
compartment by two possible ways, due to the hydrostatic and osmotic pressures
toward hepatic venules, with the flow R(t) and toward lymphatic capillaries with
the flow Ql(t). In this compartment, the liquid has the concentration Cec(t). Finally,
blood leaves MFU by hepatic venule, with the flow Qhv(t). The re-flow Qpl(t) from
hepatic venules into extracellular space28 is also integrated into the model. The con-
trast material concentration in the third compartment is Chv(t). As the macroscopic
vascular model does not currently take into account the lymphatic circulation, the
lymphatic flow from the extracellular space (Ql(t)) is artificially connected to the
venous circulation (Qhv(t)) given only one output: the hepatic venous flow. In or-
der to study concentration variations in the different compartments, exchanges are
formalized by the following differential equations:

Vs
dCs(t)

dt
= Cha(t)Qha(t) + Cpv(t)Qpv(t)− Cs(t)F (t) (7)

Vec
dCec(t)

dt
= Cs(t)F (t) + Chv(t)Qpl(t)− Cec(t)(R(t) + Ql(t)) (8)
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Vhv
dChv(t)

dt
= Cec(t)R(t) + Chv(t)(Qpl(t)−Qhv(t)) (9)

The compartment volumes are obtained by dividing the volumes corresponding
to the whole organ by the number of MFUs. For transvascular flows, general circu-
lation data are used leading to the following relations24: F = Qha +Qpv,R = 0.84F ,
Ql = 0.21F and Qpl = R + Ql − F .

2.2.2. Virtual scanning

Here, a full backprojection process29,30 is applied. The first step consists in creating
a 3D map in which each voxel is characterized by a density, taking into account the
partial volume effect. The density of a voxel intersecting partially a vessel depends on
the volume of the voxel filled by blood and of respective concentrations of contrast
material in blood and parenchyma. The volume occupied by blood is computed
according to control points regularly distributed into the voxel31 and situated inside
the vessel (Fig. 9).

The number of control points influences the number of vessels effectively repre-
sented in the 3D map. The densities of a voxel included in a vessel or only made
of parenchyma have been set respectively to the typical values of the blood den-
sity and the density of non-injected liver. A gaussian noise has been added to the
parenchyma in order to render the spatial variations of microvessels. Using this data
volume, the CT scan acquisition is carried out in two steps: X-ray projections are
computed, using the Radon function and the filter back-projection method is used
to reconstruct the image. In order to take into account the thickness of the beam,
not only the voxel intersected by a ray has to be considered but also its neighbors,
that have also been touched by the beam. An interpolation method is applied to
compute the resulting attenuation (the contribution of a neighbor with density α

and whose center is situated at a distance D of the point is set to α(1−D)).

3. Applications

In this section, applications of the model-based approach are described. First, sim-
ulation results of two vital abdominal organs (namely liver and kidneys) are pre-

Vessel

Control
points

Fig. 9. The density assigned to a voxel depends on the volume of the voxel inside a vessel. To
compute it, control points distributed in the voxel are used.
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sented in normal conditions. Then pathological processes are induced and dynamic
CT images of these processes are generated during the contrast material propaga-
tion. Finally series of simulated images are analyzed by means of texture analysis
methods.

3.1. Simulation of growth and pathological modifications

3.1.1. Kidney growth in normal conditions

The 3D shape used to simulate the kidney in different steps of its growth is obtained
by a manual segmentation of CT slices followed by an interpolation of the segmented
2D Regions Of Interest, which finally provides a binary 3D representation of the
organ (Fig. 10).

CT scan series Tissue types
segmentation

Shape
reconstruction

Resulting
organ (3D)

Fig. 10. Generation of the binary shape used as a 3D constraint during simulation of the kidney
growth.

Geometrical and hemodynamical parameters used during the simulation of the
kidney growth are summarized in Table 1. They deal with the organ (size, number
of MFUs) and with the vascular network (blood pressure and flow).

Table 1. Main parameters used for the kidney simulation

Model parameter Arterial Venous
tree tree

Blood pressure at the input (mmHg) 95 10
Blood pressure at the output (mmHg) 15 5

Blood flow (ml/min) 500
Number of MFU-s in the adult organ ∼3200
Change of the organ’s size (initial→adult) (cm3) 10→400

Results of simulation are displayed in Fig. 11. The arterial and the venous trees
are represented at the very beginning of the growth, after few cycles and at the end.
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3.1.2. Pathological modifications in the liver

The model was applied to simulate the growth of liver vascular structures in two
pathological cases (hyper- and hypovascular tumor). The hepatic vascular system is
very specific because of its three trees. All of them can be simultaneously simulated
by the model, taking into account their geometric and hemodynamic relations. The
hepatic veins can be seen as the only output (it carries blood out of the liver, to
the vena cava and then to the heart) and are here coupled either with the hepatic
arteries or with the portal veins. The main parameters used to illustrate the model
behavior are defined in Table 2. The 3D bounding shape of the liver has been recon-
structed from CT-scan images (Siemens Somaton, 120 slices with 1 mm thickness)
after interactive delineation with the process described in Fig. 10. The model was
initialized with three trees consisting only of 7 vessels each. The geometry of this
initial network was chosen based on anatomical data. The structure of the largest
vessels is kept the same for the HA or for the PV because they are effectively very
similar in their main branches.

Table 2. Main parameters used in the simulation of liver.

Model parameter Hepatic Portal Hepatic
artery vein vein

Blood pressure at the input (mmHg) 95 25 12
Blood pressure at the output (mmHg) 20 15 5
Wall thickness ratio (fraction of radius) 0.2 0.1 0.1
Blood flow (ml/min) 400 1100 1500

Number of MFU-s in the adult organ ∼12000
Change of the organ’s size (initial→adult) (cm3) 75→1500

The 3D vascular model can be used to simulate hypervascular lesions like, for
example, the Hepatocellular Carcinoma (HCC), which represents the most common
hypervascular hepatic malignant tumor. The main differences between the normal
vascularization and the HCCs one is that this kind of tumor has only an arterial
blood supply and does not receive portal venous blood flow, whereas normal hepatic
tissue is perfused by the three trees. A second class of MFU is used to simulate
a focal lesion in normal parenchyma. Few abnormal MFU are introduced among
normal ones in a bounded area of the organ. Then, these tumoral MFUs co-exist
with the healthy ones and evolve with them in a succession of regeneration events
(mitosis/necrosis). Some parameters associated to this second class of MFUs are
different from the normal ones: probability of mitosis, maximum local density and
blood flow are increased in the pathological case. Figure 12 shows tumoral MFUs
among normal ones. Moreover, when a new tumoral MFU appears, only a hepatic
arteriole and a hepatic venule sprout from the existing network, but no portal venule.

The vascular modifications implied by HCC can be seen in Fig. 13, where the
three hepatic trees corresponding to healthy liver (left column) and liver with HCC
(middle column) are displayed.
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Fig. 12. Illustration of normal and tumoral MFUs in liver

In the same way, a hypovascular tumor can be simulated by introducing a new
class of MFUs with different parameters. This time the necrosis probability is in-
creased, which leads to a progressive disappearance of MFUs and creation of a
hypovascularized region in the liver (Fig. 13, right column).

3.2. Virtual CT scanning

In this section, we illustrate the coupling between the model of liver and the model
of CT modality. These two models are used to generate dynamic CT images of the
liver, where local pathological changes can be tracked during the CM propagation.

3.2.1. Contrast product propagation in liver

Hepatic hemodynamic interactions are very complex because of the dual blood
supply of the liver: 20-25% of the blood comes directly from the aorta, through the
hepatic artery and 75-80% from the mesentery through the portal vein. At the entry
of the hepatic capillaries (sinusoids) the two flows mix.

In clinical routine, spiral CT scanning after injection of contrast medium pro-
vides high quality images of the liver and the capability to fully explore the organ
during arterial and portal phases. It improves the detection and the characterization
of hepatic tumors by amplifying the difference in attenuation between the tumor
and the normal parenchyma32,33. Distinction of the two main phases of the liver
enhancement is of great clinical interest: it allows determining the optimal temporal
windows for the liver exploration and for a maximal conspicuity of tumors. For ex-
ample, hypervascular hepatic lesions are better detectable during the pure arterial
phase when the contribution of the portal blood supply is not preponderant yet.
But the duration of this phase is difficult to estimate34. This is mainly due to the
variations of the hepatic enhancement with a large number of parameters (type and
quantity of contrast material, injection flow and duration, monophasic or biphasic
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Fig. 13. Hepatic vascular network simulated in three cases: normal (left), hypervascularization
(middle), hypovascularization (right). Each tree is presented separately to enable a better visual-
ization, but they are physically connected.

injection) or the tumor types35.
Many clinical studies have been performed during the last 15 years, in order to

understand the influence of all these features. For instance, in Ref 36, it is shown
on a group of 109 patients that the risk of missing a tumor decreases with a double
phase acquisition, compared to a simple one. In Ref. 37, the influence of the quantity
of contrast product, and the injection flow is evaluated on 25 patients, concluding
that augmenting the CM flow results in an acceleration of the hepatic enhancement.

Dodd and Baron38 underline the lack of standardization of clinical studies, whose
results are difficult to compare. Indeed, in some of these studies, extrinsic parameters
(depending of the CM administration and the image acquisition protocol, number
of slices, level of slices) are often heuristically chosen with an important part of
randomness, and significant intrinsic parameters can be ignored. The necessity to
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control these parameters is still amplified by the fast advances that intervene in
the imaging technology as well as in the field of contrast materials, limiting the
usefulness of clinical studies.

Few models of the liver enhancement have been proposed so far. Bae et al.25

applied their compartmental model of the human cardiovascular system to simu-
late enhancement curves corresponding to three groups of patients with varying
height and weight. The model presented in Ref. 26 is also interesting to quantify
the hepatic perfusion and to extract anatomical and functional properties from a
CT acquisition. Work of Kim et al.39 is based on a compartmental model of the
liver, including a tumor. This model is used to simulate enhancement curves and
to predict the optimal injection protocol. All these models are useful to simulate
curves corresponding to the whole liver but cannot be used to synthesize images or
local vascular modifications. Thus, we applied the physiological model of the liver
coupled with the model of CT images in order to create hepatic dynamic CT scans.

In Fig. 14, the arterial and portal phases of contrast product propagation are
presented (enhanced 3D vascular trees and a corresponding CT slice) in the case of
a hypervascular tumor.

During the arterial phase the lesion can be detected easily: it appears more
intense than normal surrounding parenchyma. During the portal phase the lesion
becomes slightly hypodense when compared to normal tissue. This enhancement is
in agreement with what is observed during the classical radiological examination,
realized for this kind of disease. During the first early acquisition phase (around
20-30 s after contrast infusion) HCC receives highly concentrated CM coming from
the HA, while the liver parenchyma is less enhanced because receiving less CM (PV
does not contain CM yet), which leads to a high lesion conspicuity. Then, in the
other phase, the normal parenchyma is strongly enhanced due to the important flow
of CM arriving through the PV (representing about 80% of the total flow) whereas
the tumor CM supply (only arterial) diminishes. It leads to the inversion of the
enhancement and to the decrease of conspicuity.

The same kind of simulation has been performed in the case of hypovascular
tumor. Figure 15 shows arterial and portal phases of contrast product propagation
(enhanced 3D vascular trees and corresponding CT slices) for this second kind of
disease.

The hypovascular region is visible during both, the arterial and the portal phase,
because the contrast product concentration is always lower in this region than in
normal parenchyma. So, the tumor conspicuity essentially depends on the contrast
concentration in normal parenchyma. It is the reason why it is more important
during the portal phase (given the proportion between arterial and portal flows).

3.3. Texture analysis of hepatic CT

Semi-automatic and objective tissue characterization still remains an open problem
for many types of imaging modalities and organs. Texture analysis is useful to
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Fig. 14. Enhancement of a hypervascular lesion in 3D (HA, PV, HV) with the corresponding
CT acquisition during the arterial (left column) and portal phases (right column). The scan is
generated at the tumor level. The CT slice characteristics are: 512x512 matrix, 8-bit gray levels,
4 mm thickness.
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Fig. 15. Enhancement of a hypovascular lesion in 3D (HA, PV, HV) with the corresponding
CT acquisition during the arterial (left column) and portal phases (right column). The scan is
generated at the tumor level. The CT slice characteristics are: 512x512 matrix, 8-bit gray levels,
4 mm thickness.
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describe homogeneous areas of medical images. It consists in extracting a set of
parameters to characterize Regions Of Interest (ROI) defined in the organs under
study.

These features are generally derived from simple (e.g. first-order and gradient-
based statistics) or more sophisticated (for example based on co-occurrence or
run-length matrices) statistical properties of the image40. Another possibility en-
compasses model-based approaches (e.g. fractals41 and Markov fields42), transform
methods (e.g. based on Fourier, Gabor43 or wavelet transformations44) and math-
ematical morphology operations45.

Texture analysis is known to be very sensitive for the discrimination of
pathologies46. It was successfully applied to a broad range of imaging modalities and
diagnostic problems such as: dystrophy of skeletal muscle (MRI)47, breast nodules
(ultrasound B-scan)48, botulism on trabecular bone (X-ray radiograms)49, solitary
pulmonary nodules (CT)50, coronary plaques (intravascular ultrasound)51. Even if
all these works lead to potentially interesting results, common difficulties have been
raised.

The number of potential textural features is high and it is generally not easy
to choose the most meaningful ones given the organ, its pathology and the imaging
modality. This task is especially difficult for medical doctors without a great experi-
ence in texture analysis. The straightforward mapping of the extracted parameters
to image characteristics used by the radiologists during their visual analysis is not
always possible, what may explain why these automatic methods are not exten-
sively used in clinical routine. Another difficulty lies in the lack of standardization
of methods used to acquire and analyze images, which makes difficult any reliable
comparison of the results obtained in various centers. The need to define appropriate
protocols is unquestionable, but achieving the consensus is very difficult, especially
because it depends on the acquisition equipment. This situation emphasizes the
difficulties to control and reduce the variability of the features as reported in the
literature.

Computational modeling of the texture formation process can be useful to face
aforementioned problems and to better understand the relation between observed
image data and underlying tissue properties. The coupled models presented in the
previous section allow us to control the full process of image formation. Even if
modeling remains only an approximation of reality, it offers the possibility to scan
repeatedly the same organ with various acquisition conditions, and then to study
the influence of acquisition parameters on texture52. In this paragraph, these im-
ages are presented, and the evolution of certain textural features is illustrated, at
different times, and for the two pathological cases already mentioned (hyper- and
hypovascular tumor)53. We don’t give here the definition of textural features that
are used. They can be found in literature (e.g. in Ref. 40).
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Zoom x 1.0 Zoom x 2.0

Arterial phase Portal phase Arterial phase Portal phase

Fig. 16. Arterial tree with the hypervascularized region and the corresponding CT scans (at
arterial and portal phase with varied spatial resolution and slice thicknesses).

3.3.1. Hypervascular lesion

Figure 16 shows the simulation results of the hepatic arterial tree perfusing a liver
with an hypervascular lesion. The 3D vascular tree is presented with two different
resolutions (Zoom × 1, Zoom × 2). In the same figure eight simulated CT scans are
shown, four at each resolution. For each resolution, two images correspond to a 2
mm slice thickness and two have been synthesized with a 8 mm thickness. Among
the two images with a given thickness, one is simulated during the clinical “arterial
phase” of acquisition, and the other during the “portal phase”.

A visual inspection of the simulated images already shows significant differences
among scans acquired with different parameters (spatial resolution, slice thickness
and time). On the 2 mm thick slices, vessels resemble dots, whereas on thicker ones,
segments and bifurcations can be easily distinguished. In addition, when the spatial
resolution is increased (by zooming) the number of visible details is augmented. It
can be expected that some textural features will vary with changes of acquisition
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conditions. In order to study their evolution with these parameters, the calculation
of features is conducted for 8 slice thicknesses (1 to 8 mm), 6 resolutions (from x1.0
to x2.0) and 2 time instants (corresponding roughly to arterial and portal phases),
what gives almost 100 combinations.

Circular, large (50 pixels radius) ROI-s are placed at the center of lesions and in
the normal tissue. Textural features obtained by classical statistical methods (first
order, gradient based, co-occurrence and run-length matrix based) are computed.
The features corresponding to four angles (0, 45, 90 and 135) (e.g. all derived from
run-length matrix) were averaged.

In Fig. 17, the evolution of three features according to the slice thickness and
the zoom is depicted at 2 acquisition times. The first one is the well-known ”average
of gray levels”. Even if it gives information only on the image intensity, and not
exactly on the spatial repartition of the gray levels, it is important to mention it
in this particular case: it is often used by radiologists to detect and characterize a
tumor. The second one, the “gray level distribution”, is derived from the run-length
matrix. The third one is ”correlation” calculated from the co-occurrence matrices.

On each graph, feature values corresponding to healthy tissue are compared with
that of the lesion. In case of a hypervascular tumor, the average gray level of the
lesion is higher in the full range of tested resolutions during the arterial phase. The
completely reversed situation can be observed during the portal phase. Considering
the gray level distribution, it can be noticed, that the two surfaces, describing the
evolution of this feature, intersect in a similar way at both phases. As far as the
third parameter is concerned, it seems to be useful only during the portal phase. In
this case, influence of the spatial resolution is predominant (discrimination between
normal and pathology is correct for zooming superior to 1.6 for all thicknesses).

3.3.2. Hypovascular lesion

The same kind of simulations have been performed in the case of a hypovascular
lesion. Results are presented in Fig. 18, in the same manner as in the hypervascular
case.

Corresponding textural features are represented in Fig. 19. The representation
of the “average of gray levels” confirms the tumor hypodensity at the two phases,
with a slightly greater difference at the portal phase, whatever the resolution and
the slice thickness. The second parameter seems more efficient during the portal
phase, and in both cases the best discrimination is obtained for extreme values
of resolution and thickness. Concerning the third parameter, it doesn’t show any
interest in portal phase, but could be useful in arterial phase if the resolution and
thickness are sufficient.

These results confirm that different acquisition conditions of CT scanning in-
fluence strongly the texture observed on images. They also point out that textural
features can potentially be used for discrimination purposes in clinical examinations,
but only when the same (or at least similar) protocols are used.
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Fig. 17. Evolution of three textural features (average of gray levels, gray levels distribution, and
correlation) with slice thickness and resolution, at arterial (left column) and portal (right column)
times. On each graph, feature values calculated inside the hypervascular lesion are confronted with
those corresponding to normal tissue.
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Fig. 18. Arterial tree with the hypovascularized region and the corresponding CT scans (at
arterial and portal phase with varied spatial resolution and slice thicknesses)

In the preceding experiments, the features were calculated from simulated CT
images generated only at two time moments, corresponding to standard clinical
acquisition times (arterial and portal phase). However, tissue characterization can
also be ameliorated by considering the evolution of characteristics during all the
contrast medium propagation through the organ. Dynamic CT scans have been
synthesized, every second, during contrast propagation through the liver, using the
compartment model presented in the preceding section. Injection profiles we used
have been taken from Ref. 39, corresponding to the evolution of hepatic artery and
portal vein concentrations with time during three minutes.

Hepatic enhancement was measured in these simulated images, in normal tissue
and in hypervascular tumor. Relative enhancement (compared to the simulated
CT scan before injection) over time is displayed in Fig. 20. These curves are very
close to real liver enhancement (curves can be found in Ref. 39). They show a rapid
concentration rise in the tumor (supplied only by HA) followed by a similar increase
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Fig. 19. Evolution of three textural features (average of gray levels, gray levels distribution, and
correlation) with slice thickness and resolution, at arterial (left column) and portal (right column)
times. On each graph, feature values calculated inside the hypovascular lesion are confronted with
those corresponding to normal tissue.
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Fig. 20. Enhancement curves resulting from simulated CT scans of the liver. Enhancement in nor-
mal parenchyma and the lesion are represented in solid lines. Dotted lines correspond to injection
profiles in the hepatic artery and the portal vein.

in normal tissue (supplied by both HA and PV), and a slower decrease in both of
these vessels, tending to an equilibrium between normal and tumoral tissues.

These experiments show that combining the two models, one for the macro-
vascular trees, and the other for micro-vessels, provides a realistic model of dynamic
hepatic enhancement in CT. The same kind of dynamic measures can be made for
textural features.

4. Conclusion

In this chapter we propose a general framework for medical image analysis based
on modeling. The framework is composed of a model of organ coupled with a model
of image acquisition. It is exemplified on the particular case of i) parenchymous
organs with a highly developed vascular network, and ii) Computed Tomography
acquisition.

The organ and its vascular network are simulated by a knowledge based model,
including physiological rules (pressure, blood flow and vascular density) and mor-
phological boundary constraints. The organ growth is reproduced, during which
new vessels progressively appear to answer to increasing blood needs. The model
of image acquisition is based on the physical process of Computed Tomography. It
is used to synthesize timed-stamped series of images with varying parameters (e.g.
spatial resolution) after injection of a contrast material through the vessel network
and the parenchyma. At the microscopic level, two models are proposed to simulate
the exchanges between blood vessels and tissue: a simple one, based on a queue
principle (First In, First Out), and a more precise one resorting to compartmental
theory.
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Two main applications are presented, concerning vital organs: the kidney and
the liver. In the normal case, the vascular networks of these two organs are quite
different: the renal vascularization is made of two trees, while the hepatic vascu-
larization is very particular due to the presence of three connected trees. Vascular
modifications related to pathology are also illustrated by modeling hepatic hyper-
vascular (and hypovascular) tumors. CT scans are generated in these pathological
conditions with two acquisition delays after contrast infusion: early arterial phase
and later portal phase. The coupled models have been used to simulate the en-
hancement of a hypervascular tumor (e.g. Hepatocellular Carcinoma) at different
acquisition times. These simulated images are in agreement with real acquisitions,
showing a maximum conspicuity of the lesion during the arterial phase, with an
hyperdensity compared to normal parenchyma and a slightly inverted contrast, al-
most obscuring the lesion during the portal venous phase. The final step of this
model based approach deals with tissue characterization. Classical methods of tex-
ture analysis (co-occurrence, gradients and run-length) have been applied on images
representing healthy and tumoral liver with various acquisition parameters.

These experiments show how this kind of physiological model coupled with a
physical model of acquisition can help i) to better understand the complex interac-
tions at the origin of dynamic enhancement of organs in medical images and ii) to
relate generally abstract textural features to more explicit anatomic or functional
properties.

Future work will deal with the evaluation of the influence of acquisition con-
ditions on the efficiency of textural features to characterize pathological tissues.
Studying the influence of the injection protocols (changing the injection time pro-
files) on images and on the typical time measurements (for instance, duration of the
hepatic arterial phase) will also be possible in this framework. This model-based
approach should be useful in the optimization of injection protocols and acquisition
times, for in vivo examination. Moreover, other organs and other diseases can be
considered in this modeling approach, in order to appreciate how vascular failure oc-
cur and what can be their repercussion on the organ anatomy and function. Models
of other acquisition modalities can also be developed, like for instance Ultrasound
or Magnetic Resonance Imaging.
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