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Toward a Better Understanding of Texture in Vascular CT
Scan Simulated Images

J. Bézy-Wendling*, M. Kretowski, Y. Rolland, and W. Le Bidon

Abstract—This paper shows the influence of computed tomography
slice thickness on textural parameters by simulating realistic images
issued from: 1) a 3D model of vascular tree, with structural and functional
features and in which angiogenesis is related to the organ growth; 2) a
projection/reconstruction process using fast Fourier transform. Texture
analysis is performed by means of second-order statistics and gradient
based methods.

Index Terms—Image analysis, texture simulation, vascular modeling.

I. INTRODUCTION

Texture analysis is an efficient tool to characterize normal and dis-
eased living tissues [1]. However, textural features are strongly influ-
enced by the image acquisition conditions. Modeling the tissue and
the image generation is a very good mean of studying these variations,
as far as sound physiologically based objects and physically based
imaging are both used.

The three-dimensional (3-D) objects we use for image simulation
are vascular trees (Fig. 1). Indeed, in many cases, vessels are im-
portant primitives in medical images, when enhanced by a contrast
product. Blood vessels are good markers of pathophysiological mod-
ifications of tissues: their structure, density, and geometry are often
changed when a disease appears and develops. Such models have
been reported before. Gottlieb [2] proposed a two-dimensional (2-D)
model where the growth of the tree depends on the organ development,
but hemodynamic behavior of blood is not simulated. The model of
Schreiner [3] is more complete: geometrical and functional properties
of the tree are well simulated, but it is still a 2-D model and it does not
allow to simulate pathological cases. More recently, a 3-D extension
of this work has been proposed [4]. Our model [5], [6] is a functional
3-D one. Moreover, vascular modifications due to pathology (changes
of vascular density, pressure, blood flow) can easily be simulated. The
main concepts of the model presented in [5], [6] are close to those
reported in [4]. The vessels (rigid tubes forming a binary tree) grow
to irrigate macro-cells uniformly distributed in a 3-D organ (static
shape in [4], growing in [5] and [6]). In both cases, blood is con-
sidered as a Newtonian fluid whose flow is governed by Poiseuille’s
law. Similarly, two optimization levels are distinguished: a geomet-
rical optimization of the new bifurcation (minimizing the volume of
blood added), and a more global process consisting in re-computing

Manuscript received May 29, 2000; revised September 21, 2000.Asterisk
indicates corresponding author.

*J. Bézy-Wendling is with the Laboratoire Traitement du Signal et de l’Image,
INSERM, Université de Rennes 1, Bâtiment 22, Campus de Beaulieu, 35042
Rennes Cedex, France (e-mail: johanne.bezy@univ-rennes1.fr).

M. Kretowski is with the Laboratoire Traitement du Signal et de l’Image,
INSERM, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex,
France. He is also with the Institute of Computer Science, Technical University
of Bialystok, 15-405 Bialystok, Poland.

Y. Rolland is with the Laboratoire Traitement du Signal et de l’Image, IN-
SERM, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex,
France. He is also with the Département de Radiologie et d’Imagerie Médicale
(DRIMS), CHR Hôpital Sud, 35000 Rennes, France.

W. Le Bidon are with the Laboratoire Traitement du Signal et de l’Image,
INSERM, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex,
France.

Publisher Item Identifier S 0018-9294(01)00144-6.

0018–9294/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 48, NO. 1, JANUARY 2001 121

Fig. 1. A framework to better understand textural feature variations.
Simulation of 3-D vascular trees is followed by simulation of CT images.
The influence of the vascular parameters and of the acquisition conditions on
textural features is studied.

(in slightly different ways) radii of the tree after addition of a new
cell. The advances presented in [4] deal with the extension of the 2-D
model first presented in [3], and the introduction of terminal flow
variability, which influences the structure and the geometry of the
vascular tree. This property could be compared to the one we used in
[5], [6], where several classes of cells, with different geometrical and
physiological properties coexist in a same organ, leading to various
kinds of vascular regions (hyper-vascularized/normal for example).

In a previous study [7], CT scan acquisitions have been simulated
using a simplified method and the capability of textural features in dis-
criminating between normal and hyper vascularization situations has
been examined. In this paper, we present a more realistic method of
CT scan image generation by fully representing the interactions be-
tween X-rays and tissues. In Section II, the model used to create 3-D
vascular trees is briefly presented. In Section III, the projection and
backprojection process is described and results of texture analysis are
given and discussed in Section IV.

II. THREE-DIMENSIONAL VASCULAR TREE MODELING

The tissue is made of units (macrocells), characterized by geometric
and hemodynamic properties (refer for more details to [5] and [6]).
The parameters of a macrocell are its size, the radius of its irrigating
vessel (which corresponds to the smallest modeled vessel) and its class
(normal or pathological, with several possible pathologies). A max-
imum density (number of macrocells in a given tissue region) and a
subdivision time rate are associated with each class of cells. The birth
of a new cell gives rise to the birth of a small vessel, which will grow
in order to irrigate the cell.

TABLE I
PARAMETERSUSED TOSIMULATE THE 3-D HEPATIC ARTERIAL TREE

Two optimization processes are used during the growth of the tree.
When a small vessel is created, the new bifurcation is locally opti-
mized (we chose the minimum blood volume as the target function). A
global optimization procedure is also used to guarantee, at every stage
of the growth, that a geometric relation between radii in each bifurca-
tion (R
 = R




left + R



right) and hemodynamic (blood pressure at the
tree input and at its extremities, blood flow) constraints are satisfied.
The main physical laws used in the optimization steps are Poiseuille’s
law and the matter conservation property (blood flow in a father vessel
is equal to the sum of blood flows in its two children).

The 3-D model used in this paper simulates the hepatic arterial tree
(Table I). The liver was made of two classes of macrocells: normal and
pathological. The latter cells needs more blood, divide more quickly
and their maximum density is higher than that of normal macrocells.
A hyper-vascularized region can then be generated in the vascular tree
(Fig. 2).

III. CT SCAN IMAGE SIMULATION

The geometrically based method reported in [7] consisted to look
for the intersection between each vessel of the vascular tree and the
given slice plane with a known thickness. Vessels whose diameters
were greater than the pixel size appeared clearly like spots with shapes
and intensities depending on the vessels caliber and orientation with re-
spect to the slice, and the slice thickness. Here, a full projection-back-
projection process is applied.

The first step consists to create of a 3-D map (i.e., 2563) in which
each voxel is characterized by a density, taking into account the partial
volume effect. The density of a voxel intersecting partially a vessel
is proportional to the volume of the voxel filled by blood. Its value
is computed according to control points regularly distributed into the
voxel (Fig. 3) and situated inside the vessel. The number of control
points influences the number of vessels effectively represented in the
3-D map (here we used 53 points, which provides a more precise
image than 33). The densities of a voxel included in a vessel or
only made of parenchyma have been respectively set to 220 and
70 (classical values of density for respectively the blood, and the
noninjected liver). A gaussian noise has been added to the parenchyma
in order to render the spatial variations of microvessels. Its standard
deviation(�) can vary according to the class of tissue. The values we
chose (� = 10 for normal,� = 20 for hyper vascularized) have been
a priori determined. Measures made on real images should give us
more precise values.

Using this data volume, the CT scan acquisition is carried out in
two steps: X-ray projections are computed, using the Radon function
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Fig. 2. Vascular tree simulated with parameters of Table I. Two regions with
different vascular properties can be distinguished: a normally vascularized
region (top) and a hyper-vascularized region (bottom).

Fig. 3. The density assigned to a voxel is proportional to the volume of the
voxel inside a vessel. To compute it, control points distributed in the voxel are
used.

and, the filter back-projection method [8], [9] is used to reconstruct the
image.

In order to take into account the thickness of the beam, not only
the voxel intersected by a ray has to be considered but also its neigh-
bors, that have also been touched by the beam. An interpolation method
is applied to compute the resulting attenuation (the contribution of a

Fig. 4. Six examples of CT scan simulated images, from the tree of Fig. 2.
Left: Images simulated in the normally vascularized region, with 1-mm (top),
4-mm (middle) and 8-mm (bottom) slice thickness. The standard deviation of the
gaussian noise used to simulate parenchyma is� = 10. Right: Corresponding
images simulated in the hyper vascularized region of the tree, with� = 20.

neighbor with densitya and whose center is situated at a distanceD of
the point is set toa(1�D)). Then the sum, for each ray, of the attenua-
tion values for all the voxels situated on the ray, provides the projection
map.

For each projection angle, the projections are filtered before pro-
ceeding to the back-projection. A fast Fourier transform (FFT) algo-
rithm is used to obtain the Fourier coefficientsF (!). These coefficients
are then multiplied byj!j before coming back to the spatial domain by
an inverse FFT.

This approach allows modifying the image resolution as well as the
slice thickness. The resolution is set during the density map generation.
To increase or decrease the resolution, a zoom factor can be applied to
a 3-D region of interest in the tree. The slice thickness is taken into ac-
count during the projection step. To compute the projection value along
a given direction, the attenuation coefficients of the voxels belonging
to a number of layers (with constant thickness of 0.25 mm), depending
of the desired thickness, are summed.

IV. RESULTS AND DISCUSSION

Slice images were generated from the hepatic arterial tree with a
thickness ranging from 1 mm to 8 mm (Fig. 4) and for normal and
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Fig. 5. Evolution of some textural features (vertical orientation) according to
the slice thickness (standard deviation are represented by vertical bars).

hyper-vascularized regions of the organ displayed Fig. 2 (the spatial
resolution is 0.25 mm).

They show that vessel patterns go from spot-like to ribbon-like
shapes when the slice thickness is increased. A clear differentiation
can be visually done between normal and hyper vascularized tissues.
The smoothing due to the projection/back-projection procedure leads
to less contrasted images when compared to the results previously
published on simulated data but more similar to real images [7]. A
quantitative analysis has been performed. Most of the textural features
available from the literature have been computed (theoretical formula-
tions can be found in [1]). Only some of them are displayed Fig. 5, as
a function of slice thickness for two types of vascularization (normal

and hyper). The parameter values have been computed on 12 regions
of interest (ROIs) (four per image and three images corresponding
to different anatomical positions in the organ). The vertical bars
represent standard deviations. The influence of the number of ROIs on
the results has not been precisely studied at the moment.

These results confirm the capability to discriminate normal vascu-
larization and hyper vascularization situations as described in our first
study [7]. They also point out that the relative values characterizing
normal vascularization and hyper vascularization are preserved for
each of these four features.

However, it has to be noticed that evolution of textural features is
not exactly the same with the two methods of image generation. For
example, looking at the “homogeneity” graphs, it can be seen that,
with the first method, this feature decreased with the slice thickness,
while with the second method, it slightly increases before decreasing
or becoming stable. Both kinds of variation can be explained. In im-
ages computed in our previous work, both micro- and macro-texture are
less homogeneous when slice thickness increases. In the present case,
we first studied texture given by vessels solely, and in a second time,
texture corresponding to parenchyma exclusively. The “homogeneity”
feature computed on vessels only is relatively stable with thickness less
than 4 mm, and then decreases. Conversely, for tissue only, the ho-
mogeneity progressively increases with thickness. It appears that the
global evolution of “homogeneity” with the slice thickness is the result
of a combination between these two processes: when the slice thick-
ness is lower than 4 mm, parenchyma is most prominent while, when
the slice thickness is higher than 4 mm, the vessels, which are more
and more visible, have more importance than parenchyma.

The evolution of the three other features can be explained in the same
way: the contribution of each component to the textural mixture can
vary in different ways and it is of critical importance to set the acqui-
sition conditions accordingly.

V. CONCLUSION

It has been shown that simulation can help for better designing
imaging protocols in order to objectively characterize and differentiate
tissue patterns. A systematic examination of all the factors influencing
and contributing to the final decision, from the living tissue modeling,
to the image formation and to the texture analysis algorithms, is
required. Then a real, physically based, understanding of textural
features can be expected.
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The Case for Large-Size Mutations

Sid Deutsch

Abstract—There are no laws of physics or chemistry that forbid large
mutations. Therefore, the “size” of a random mutation should fit the math-
ematics of a Poisson point process: The number of mutations( ), versus
mutation size (MS), should obey an exponential relationship. Three exam-
ples are examined: A simple 15-mutation sequence; actual experimental
data involving a sequence of 56 611 random action potentials (rather than
mutations); and a synthetic sequence of 65 535 random mutations. In the
latter example, with an average MS of 2.22 units, the largest MS is a 25-unit
giant that would be associated with major changes.

Index Terms—Evolution, living cell, mutation, Poisson point process,
pseudorandom sequence.

I. INTRODUCTION

In a recent special section on evolution, inScience, we find a state-
ment such as [1] “. . .big, beneficial mutations were thought to come
along so rarely that many models simply assumed that they play no
part in adaptation. But as evolutionists begin to probe the genetic basis
behind important adaptations, they are uncovering examples of such
large mutations, dramatically revising how biologists think about evo-
lutionary change.” The purpose of the present paper is to show that
“large-size” mutations are inevitable.

I am only discussing viable mutations, of course, the kind that each
of us has survived despite 3.8 billion years of evolution, with an endless
succession of mostly small, but occasionally large, mutational changes.

This is illustrated in Fig. 1, which depicts three short synthesized
sections of a random sequence of 65 535 mutations. The “size” of each
mutation is proportional to the interspike distance; this is probably the
most meaningful and convenient way to convey the “size” of a muta-
tion.

One can think of mutation size= 1 as representing a change inone
nucleotide; for example, from thymine to guanine or vice versa. This
depends, however, on the context: If the first living cell consists of a
circular array of 100 atoms, say, then mutation size= 1 corresponds to
a change in a single atom. (The present paper is restricted to conven-
tional nucleotide mutations.)

Although Fig. 1 is based on a mathematical model, it will turn out
that there is no escape from the conclusion that large-size mutations
actually occur. It is not possible to only accept, as viable, tiny muta-
tional changes. These are shown in Fig. 1(a), which summarizes the
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Fig. 1. Three short synthesized sections of a random sequence of 65 535
mutations. Thesize of each mutation corresponds to the distance between
starting and ending spikes. (a) The usual perception that only small mutational
changes are viable. Theaveragemutation size (MS) is 2.5 units wide for the
section shown. (b) The section that contains the largest mutation, a major
change that isMS = 25 units wide. The mutations before and after this giant
are small, as in (a). (c) The section that contains a medium-large mutation,
MS = 16. Again, the mutations before and after are small, as in (a). [Because
of the pseudorandom sequence used to synthesize the sections, (b) and (c) are
almost identical.]

usual perception: Of the 26 randomly-occurring mutations shown, ten
are minuscule [MS= 1]; six are of sizeMS = 2; four of sizeMS =
3; two each ofMS = 4 andMS = 5; one ofMS = 6; and one “giant”
of MS = 8.

But consider another section of the 65 535-mutation sequence, that
of Fig. 1(b). Here the largest mutation—withMS = 25—is pictured
near the center of the sequence. TheMS = 25 value is not a mathe-
matical error; it is mathematicallycertain that huge mutations have to
occur. Of course, any data that show up with such unexpected muta-
tions would be, in many cases, discarded (the laboratory sheet would
perhaps be torn up), hopefully accompanied by an explanation that the
power failed, or a “bug” or gremlin momentarily took over. Outliers
may sometimes be allowed; actually, in the present example, it could
be more appropriate to discard Fig. 1(a) and retain Fig. 1(b).

II. A N INVERSE-SIZE INDEX

Let M represent an inverse-size index, so thatM = 1 belongs to
the widest mutation in the sequence, such as that near the center of
Fig. 1(b). At the other extreme ofM values, then,M = 65 535 char-
acterizes a mutation so small (calculation yieldsMS = 0.09) that it is
of negligible consequence. But examination of the full sequence would
show that the gap of Fig. 1(b) is not alone. We haveM = 2 (MS =
23), M= 3 (MS= 22), and so forth. Fig. 1(c) depicts the sequence that
containsM = 63, where the MS near the center has a medium-large
value, 16.

If we plot the number of mutations of a particular size,N , versus
the mutation size, MS, we get a straight line on a semi-log plot, as
in Fig. 2(a). Obviously, entirely in agreement with the revelations of
evolution, there is a large number of relatively small mutations and, of
course, a small number of large mutations. Fig. 2 is a simple numerical
example with a sequence of only 15 mutations, as shown in Fig. 2(b).
(We will return to the 65 535-sequence example below.)

The straight line of Fig. 2(a) corresponds to a simple exponential
equation

N = N0"
��MS (1)

whereN0 is the zero-intercept value at MS= 0 [the line of Fig. 2(a)
terminates atN0 = 7.5]; � is a slope coefficient [Fig. 2(a) is drawn
with � = 0.45].
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