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Abstract. In the paper, we investigate the speeding up of the evo-
lutionary induction of decision trees, which is an emerging alterna-
tive to greedy top-down solutions. In particular, we design and imple-
ment graphics processing units (GPU)-based parallelization to generate
regression trees (decision trees employed to solve regression problems)
on large-scale data. The most time consuming part of the algorithm,
which is parallelized, is the evaluation of individuals in the population.
Other parts of the algorithms (like selection, genetic operators) are per-
formed sequentially on a CPU. A data-parallel approach is applied to
split the dataset over the GPU cores. After each assigned chunk of
data is processed, the results calculated on all GPU cores are merged
and sent to the CPU. We use a Compute Unified Device Architecture
(CUDA) programming model, which supports general purpose compu-
tation on a GPU (GPGPU). Experimental validation of the proposed
approach is performed on artificial and real-life datasets. A computa-
tional performance comparison with the traditional CPU version shows
that GPU-accelerated evolutionary induction of regression trees is signif-
icantly (even up to 1000 times) faster and allows for processing of much
larger datasets.
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1 Introduction

Evolutionary Algorithms (EAs) [21] are naturally prone to parallelism. The arti-
ficial evolution process can be parallelized using various strategies [6] and differ-
ent implementation platforms [13]. Recently, GPGPU has been widely used in
EAs parallelization due to its high computational power at a relatively low cost
[2]. It allows us to reduce the CPU load on the most time-consuming operations.
The paper covers the parallelization of the evolutionary induction of decision
trees (DT)s [18], which represents one of the major and frequently applied tech-
niques for discriminant analysis prediction in data mining [12]. Traditionally,
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DTs are induced with greedy top-down strategy, however, in the recent past
an evolutionary approach for the tree induction has attracted a great deal of
interest. The evolutionary induced DTs [3] are much simpler than the ones gen-
erated by a greedy strategy [24] with at least comparable prediction performance.
The main downside of the evolutionary approach is the relatively higher com-
putational costs due to EA itself. Thus, evolutionary induction of DTs using
large-scale data become very time-demanding.

In this paper, we focus on speeding up the evolutionary induction of regres-
sion trees that are considered as a variant of DTs, designed to approximate real-
valued functions instead of being used for classification tasks [5]. The proposed
GPU parallelization handles the most computing intensive jobs like fitness cal-
culation, leaving the evolutionary flow control and communication to the CPU.
It is applied to a framework called Global Decision Tree (GDT) that can be
used for evolutionary induction of classification [19] and regression [9] trees. The
manuscript can be seen as a continuation of previous study on GPU-based app-
roach to evolutionary induced classification trees [16]. It extends the research to
regression trees which demand a more advanced parallelization schema (e.g. for
predictions calculation in the leaves, dipole mechanism) to evaluate and evolve
individuals.

The paper is organized as follows. The next section provides a brief back-
ground. Section 3 describes our approach for GPU-accelerated evolutionary
induction of regression trees. The experimental evaluation is performed in Sect. 4
on artificial and real-life datasets. In the last section, the paper is concluded and
possible future works are outlined.

2 Background

In this section, we present some background information on evolutionary induced
regression trees, GPGPU computing model and recent related works.

2.1 Evolutionary Induced Regression Trees

There are different variants of DTs in the literature [10]. They can be grouped
according to the type of problem they are applied to and the way they are
induced. In classification trees, a class label is assigned to each leaf. Regression
trees may be considered as a variant of decision trees designed to approximate
real-valued functions instead of being used for classification tasks. In a basic
variant of a regression tree, each leaf contains a constant value, usually equal
to an average value of the target attribute of all training instances that reach
that particular leaf. To predict the value of the target attribute, the new tested
instance is followed down the tree from a root node to a leaf using its attribute
values to make routing decisions at each internal node. Next, the predicted value
for the new instance is evaluated based on prediction associated with the leaf.
Although regression trees are not as popular as classification ones, they are
highly competitive with different machine learning algorithms [23].
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Traditionally, DTs are induced with a greedy procedure known as recursive
partitioning [24]. In this top-down approach the induction algorithm starts from
a root node where the locally optimal split of the data is found according to
the given optimality measure. Next, the training instances are redirected to
newly created nodes, and this process is repeated for each node until a stopping
condition is met. Additionally, post-pruning is usually applied after the induction
to avoid the problem of over-fitting the training data.

An alternative concept for the decision tree induction focuses on a global
approach which limits the negative effects of locally optimal decisions. It tries
to simultaneously search for the tree structure and the tests in the internal
nodes. This process is obviously much more computationally complex but can
reveal hidden regularities that are often undetectable by greedy methods. Global
induction is mainly represented by systems based on an evolutionary approach
[3]. In the literature, there are relatively fewer evolutionary approaches for the
regression trees than for the classification ones. Popular representatives of EA-
based regression trees are the TARGET solution [11] that evolves a CART–
like regression tree with basic genetic operators and a strongly typed genetic
programming approach called STGP [15].

2.2 GPGPU

A general-purpose computation on GPUs (GPGPU) stands for the use of graph-
ics hardware for generic problems. One of the most popular frameworks to facili-
tate GPGPU is a Compute Unified Device Architecture (CUDA) [27] created by
the NVIDIA Corporation. In the CUDA programming model, a GPU is consid-
ered as a co-processor that can execute thousands of threads in parallel to handle
the tasks traditionally performed by the CPU. This CPU load reduction using
GPGPU is recently widely applied in many computational intelligence methods
[26]. Application of GPUs in evolutionary data mining usually focuses on boost-
ing the performance of the evolutionary process which is relatively slow due to
high computational complexity, especially for the large scale data [2].

When the CPU delegates a job to the GPU, it calls a kernel that is a function
run on the device. Then, a grid of (threads) blocks is created and each thread
executes the same kernel code in parallel. The GPU computing engine is an array
of streaming multiprocessors (SMs). Each SM consists of a collection of simple
streaming processors (called CUDA cores). Each block of threads is mapped to
one of the SMs, and the threads inside the block are mapped to CUDA cores.

There are two decomposition techniques that are most commonly used to
parallelize EAs [1]: a data approach and a control approach. The first decom-
position strategy, which is also applied in this paper, focuses on splitting the
dataset and distributing its chunks across the processors of the parallel system.
The second approach focuses on population decomposition as individuals from
the population are evaluated at the same time on different cores [14]. The main
drawback of this approach is relatively weak scalability for large-scale data.
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2.3 Related Works

Speeding up the DT induction has so far been discussed mainly in terms of
classification problems. In the literature, we may find some attempts at paral-
lelization the tree building process, however, most of the implementations focus
on either a greedy approach [20] or random forests [25]. Despite the fact that
there is a strong need for parallelizing the evolutionary induced DT [3], the topic
has not yet been adequately explored. One of the reasons is that the straightfor-
ward application of GPGPU to EA may be insufficient. In order to achieve high
speedup and exploit the full potential of such parallelization, there is a need to
incorporate knowledge about DT specifically and its evolutionary induction.

In one of the few papers that cover parallelization of evolutionary induced
DT, a hybrid MPI+OpenMP approach is investigated for both classification [7]
and regression [8] trees. The algorithms use the master-slave paradigm, and the
most time-consuming operations, such as fitness evaluation and genetic oper-
ators, are executed in parallel on slaves nodes. The authors apply the control
parallelization approach in which the population is evenly distributed to the
available nodes and cores. The experimental validation shows that the possible
speedup of such a hybrid parallelization is up to 15 times for 64 CPU cores.

To the best of our knowledge, in the literature there is one study that covers
GPGPU parallelization of evolutionary induced DTs [16]. Experimental valida-
tion on artificial and real-life datasets showed that it was capable of inducing
trees two orders of magnitude faster in comparison to the traditional CPU ver-
sion. However, it concerned only classification trees.

3 GPU-Accelerated Induction of Regression Trees

In this section, we briefly describe the original evolutionary tree induction and
next, we propose an efficient acceleration of it using GPGPU.

3.1 Global Decision Tree Induction Framework

The general structure of the GDT system follows a typical EA framework [21]
with an unstructured population and a generational selection. GDT allows evolv-
ing different kinds of tree representations [10], however; in our description we
focus on univariate trees in which each split in the internal node is based on a
single attribute. Individuals are represented in their actual form as regression
trees and initialized using a simple top-down greedy algorithm on a random sub-
sample of the training data. The tests in the internal nodes are found on random
subsets of attributes.

Tree-based representation requires developing specialized genetic operators
corresponding to classical mutation and crossover. The GDT framework [9] offers
several specialized variants that can modify simultaneously the tree structure
and tests in internal nodes. The mutation operator makes random changes in
nodes of the selected individuals by e.g. replacing the test, shifting its threshold,
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pruning the non-terminal nodes or expanding the leaves. To construct a new test
in the internal node GDT uses a locally optimized strategy called ‘long dipole’
[9]. At first, an instance that will constitute the dipole is randomly selected
from the set of instances from a current node. The rest of the objects are sorted
in decreasing order according to the difference between the dependent variable
values and the selected instance. Next, the second instance that constitutes the
dipole with possibly a much different dependent variable value is searched for
using a mechanism similar to the ranking linear selection [21]. Finally, the test
that splits the dipole is constructed based on a randomly selected attribute.
The threshold value is randomly selected from a range defined by the pairs that
constitute the dipole.

The crossover operator attempts to combine elements of two existing individ-
uals (parents) to create a new solution. Randomly selected nodes may exchange
the tests, branches or even the subtrees in asymmetrical manner [9]. Both oper-
ators are applied with a given probability to a tree (default value is 0.8 for
mutation and 0.2 for crossover). Selecting the point of mutation or crossover
depends on the location (level) of the node in the tree and its average predic-
tion error per instance. This way the weak nodes (with high error value) and
the ones from the lower parts of the tree are selected with higher probability.
Successful application of any operator results in the necessity for relocation of
the learning instances between tree parts rooted in the modified nodes. In addi-
tion, in every node, information about training instances currently associated
with the node is stored. This makes it faster to perform local structure and test
modifications during applications of genetic operators. However, it increases the
memory consumption.

Fitness function is one of the most important and sensitive elements in the
design of EAs. It drives the evolutionary search process by measuring how good
a single individual is in terms of meeting the problem objective. GDT frame-
work offers different multi-objective strategies like weight formula, lexicographic
analysis or Pareto dominance. Here, we use the first strategy and apply the
following expression for the fitness function:

Fitness(T ) = [1 − 1/(1 + RMSE(T ))] + α(S(T ) − 1.0), (1)

where S is the tree size expressed as a number of nodes, RMSEs is root-mean-
square error, α is the relative importance of the complexity term and a user
supplied parameter (default value is 0.0005).

The selection mechanism is based on a ranking linear selection [21] with
the elitist strategy, which copies the best individual founded so far to the next
population. Evolution terminates when the fitness of the best individual in the
population does not improve during a fixed number of generations (default: 1000)
or maximum number of generations is reached (default: 5000).

3.2 GPU-Based Approach

The proposed algorithm is based on a data decomposition strategy. In this app-
roach, each GPU thread operates on a small fraction of the dataset. The general
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flowchart of our GPU-based approach is illustrated in Fig. 1. It can be seen that
only the most time consuming operation of EA, the evaluation of the individuals,
is performed in parallel on GPU. The parallelization does not affect the behavior
of the original EA as the evolutionary induction flow is driven by the CPU in a
sequential manner.

Fig. 1. Flowchart of a GPU-accelerated algorithm.

The first modification of the GDT framework concerns the initialization
phase that begins by sending and saving the whole dataset from CPU to the
global GPU memory. This way the GPU threads have constant access to the
data and the heaviest data transfer is performed only once. The following oper-
ations: initialization of the population as well as selection of the individuals
remain unchanged compared to original GDT system. The reason why these ini-
tial steps are not parallelized is that the initial population is created only once on
small fractions of the dataset. In the evolutionary loop, CPU is also involved in
relatively fast operations like genetic operators and selection. After successfully
application of crossover or mutation, there is a need to evaluate the individuals.
For calculating RMSE and fitness, all objects in the training dataset need to be
passed through the tree starting from the root node to an appropriate leaf. As
this is a time-consuming operation and can be performed in parallel, it is dele-
gated to the GPU which performs all necessary objects relocations and fitness
calculation.

The cooperation between CPU and GPU is organized in four kernel calls
that can be grouped into two sets: Kernel1pre/post and Kernel2pre/post (Fig. 2).
They cover the decomposition phase (pre) and gathering phase (post) which
is illustrated in Fig. 2. The role of the first function named Kernel1pre is to
propagate objects from the root of the tree to the leaves. Each GPU block makes
a copy of the evaluated individual that is later loaded into the shared memory
that is visible in all threads within the block. The dataset is spread into smaller
parts, first between different GPU blocks and then further between the threads.
This way the threads can process the same individual but perform calculations
on different chunks of the data. In each tree leaf the sum of predictions for the
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Fig. 2. Four kernel functions responsible finally for fitness info calculation for each
individual.

training instances that reach that particular leaf as well as the number of the
objects are stored. Next, the gathering function Kernel1post merges information
from multiple copies of the individual allocated in each GPU block (see Fig. 2).
For each individual, information that was calculated by the threads and stored
in the leaves is combined.

The role of the Kernel2 functions is to enable the fitness calculation of
the individual. In order to do that, the tree error must be determined using
the information calculated by the Kernel1 functions and stored in the leaves.
Kernel2pre function again splits the dataset into small parts and next in each
GPU block its threads propagate and assign objects to the tree leaves. This oper-
ation is necessary to calculate the squared error of each tree leaf in Kernel2pre
function and finally overall sum of squared residuals in the Kernel2post call.
Like in Kernel1pre function, each GPU block stores a copy of the individ-
ual. The threads within the blocks calculate the prediction (mean value) for
every leaf of every individual in the population from the information gathered
in Kernel1 function. Next, each thread sums the squared differences between
assigned objects predictions and the leaf prediction. The Kernel2post function
gathers and merges the information of the squared error for each leaf from GPU



94 K. Jurczuk et al.

blocks, determines sum of squared residuals and propagates the tree error from
the leaves to the root node.

To improve the algorithm’s performance, during the evolutionary induction
CPU does not have access to the objects that fall into particular nodes of the tree
as the propagation of the instances is performed on GPU. However, some variants
of the mutation operator, that searches for the ‘long dipole’, require at least two
objects to construct a new test in the internal node. That is why, in our GPU-
accelerated approach each tree node contains additional information about two
instances that may constitute ‘long dipole’. First instance is randomly selected
in the Kernel1pre function and the second one is set during gathering phase in
the Kernel2post function. When the multiple copies of the tree are merged, in
each node the second instance is searched from available set of instances in other
GPU blocks according to the differences in the dependent variable value. As both
instances are selected randomly and should have much different target values,
the general concept of the ‘long dipole’ used in CPU version is maintained.

4 Experimental Validation

In this section, the performance analysis of the GPU-accelerated algorithm is
verified, both on large-scale artificial and real-life datasets. As we are focused
in this paper only on speeding up the GDT system, the results for the pre-
diction performance are not included. For detailed information about the GDT
prediction performance please see our previous papers [9,10].

4.1 Setup

In all experiments a default set of parameters from the sequential version of
the GDT system is used and the results correspond to averages of 10 runs. We
have tested two artificially generated datasets called armchair and chess (1,
5, 10 and 20 millions of instances, 2 real-valued attributes) [7,8] and two large
real-life publicly available datasets: Suzy (5 millions of instances, 17 real-valued
attributes) and Y ear (515 345 instances, 90 real-valued attributes) available in
the UCI Machine Learning Repository [4]. Due to the lack of publicly available
large-scale regression datasets, Suzy which originally concerned classification
was transformed in such a way that in performed experiments the value of the
last attribute is predicted instead of the class label. The only purpose of this
operation was to investigate the algorithm’s speedup and not the prediction
performance.

All the experiments were performed on a regular PC equipped with a proces-
sor Intel Xeon E5-2620 v4 (20 MB Cache, 2.10 GHz), 64 GB RAM, and a single
graphics card. We used a 64-bit Ubuntu Linux 16.04.02 LTS as an operating
system. The sequential algorithm was implemented in C++ and compiled with
the use of gcc version 5.4.0. The GPU-based parallelization was implemented in
CUDA-C and compiled by nvcc CUDA 8.0 [22] (single-precision arithmetic was
applied). We tested three NVIDIA GeForce GTX graphics cards:
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– 780 (2304 CUDA cores, clock rate 863 MHz, 3 GB of memory with 288.4
GB/s bandwidth),

– Titan Black (2880 CUDA cores, clock rate 889 MHz, 6 GB of memory with
336.0 GB/s bandwidth),

– Titan X (3072 CUDA cores, clock rate 1000 MHz, 12 GB of memory with
336.5 GB/s bandwidth).

4.2 Results

Table 1 shows the obtained speedup of the proposed GPU-accelerated algorithm
in comparison to its sequential version. Speedup for three GPUs and different
datasets are included. It is clearly visible that the proposed GPU-acceleration
provides a significant decrease in computation time. NVIDIA GTX Titan X
GPU is able to speed up the evolutionary induction even more than ×1000,
while other GPUs allow us to decrease the computation time at least ×100.

The scale of the improvement is even more visible when comparing the exe-
cution time between the sequential and parallel version of the GDT system
(Table 2). For large data, the tree induction time for the proposed solution can
be counted in minutes, while the original sequential algorithm often needs at
least a few days. Moreover, the achieved speedup is much higher than the one
obtained by a computer cluster of 16 nodes each equipped with 2 quad-core
CPUs (Xeon 2.66 GHz) (128 CPU cores in total) and 16 GB RAM [8].

Table 1. Mean speedup for different datasets and various GPUs.

Dataset GTX 780 GTX Titan Black GTX Titan X

Armchair1M ×470 ×496 ×1189

Armchair5M ×572 ×535 ×1328

Armchair10M ×529 ×546 ×1372

Armchair20M ×505 ×458 ×1349

Chess1M ×140 ×121 ×232

Chess5M ×176 ×192 ×300

Chess10M ×181 ×188 ×249

Chess20M ×163 ×129 ×259

Year ×421 ×512 ×885

Suzy ×344 ×324 ×760

The results suggest that with the proposed approach even a regular PC with
a medium-class graphics card is enough to significantly accelerate the GDT tree
induction time. As it is expected, better graphics cards manage to achieve much
better accelerations. However, the NVIDIA GTX 780 GPU is much cheaper
(about 10 times) than NVIDIA GTX Titan X GPU and it provides only 2 or 3
times lower speedup.
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Fig. 3. The mean speedup for a few blocks × threads configurations and the different
size of the dataset (1, 5, 10, and 20 million instances), successively for: (a) Geforce
GTX 780, Chess, (b) Geforce GTX Titan X, Chess, (c) Geforce GTX 780, Armchair,
(d) Geforce GTX Titan X, Armchair.

There is also a difference in speedup between datasets and/or their size.
The highest acceleration was when using the Armchair dataset. This dataset is
the simplest one and the induced trees are the smallest. This can suggest that
the size of the generated regression trees (problem difficulty) influences time
performance due to CUDA thread/branch divergence [27]. More investigation is
needed here, e.g. detailed time profiling of both CPU and GPU.

We also experimentally verified whether different sizes of the data processed
in each block/thread influences the algorithm time. For this purpose, we tested
various blocks × threads configurations using two datasets (Chess and Arm-
chair) and the slowest/quickest GPU (GTX 780 and GTX Titan X). Figure 3
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Table 2. Mean execution time of the sequential algorithm as well as its GPU-
accelerated version on the fastest GPU (in seconds and days/hours/minutes).

Dataset Sequential GPU-accelerated

Armchair1M 74 783 s ≈ 21 h 63 s ≈ 1 min

Armchair5M 404 388 s ≈ 4.5 days 304.5 s ≈ 5 min

Armchair10M 781 668 s ≈ 9 days 570 s ≈ 9.5 min

Armchair20M 1 492 440 s ≈ 17 days 1106 s ≈ 18.5 min

Chess1M 102 599 s ≈ 1 days 4 h 442 s ≈ 7 min

Chess5M 550 915 s ≈ 6 days 9 h 1 834 s ≈ 30.5 min

Chess10M 1 050 515 s ≈ 12 days 4 219 s ≈ 1 h 10.5 min

Chess20M 2 076 507 s ≈ 24 days 8 020 s ≈ 2 h 13.5 min

Year 90 360 s ≈ 25 h 102 s ≈ 1.5 min

Suzy 710 000 s ≈ 8 days 5 h 934 s ≈ 15 min

shows that for all larger datasets (starting with 10M), the configuration with
more blocks/threads fits the best, whereas for smaller datasets configurations
with less blocks/threads gives noticeably better results. There are at least two
reasons that may explain the described algorithm behavior. Too small data por-
tions per thread could cause more overhead as there are more threads to create,
manage, and so on. On the other hand, the problem with load balancing can
exist when the chunks of data are too big.

5 Conclusion

This paper focuses on GPU-accelerated evolutionary induction of regression
trees. Proposed implementation takes an advantage of the specificity of evo-
lutionary DT induction to exploit the full potential of GPGPU approach. Pre-
sented results show that our solution is fast, scalable and can easily explore
large-scale data.

We see many promising directions for future research. In particular, we are
currently working on extending our approach on regression trees with linear
models in the leaves (model trees) and multi-GPU platforms. There are also
many interesting ideas for optimization the proposed algorithm like processing
only the modified by the genetic operators part of the tree instead of propagation
all dataset objects. We also plan to verify the influence of various GPU specific
memory improvements [17] in order to speed up the algorithm further.
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