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Abstract. Relative Expression Analysis (RXA) plays an important role
in biomarker discovery and disease prediction from gene expression pro-
files. It deliberately ignores raw data values and investigates only the
relative ordering relationships between a small group of genes. The clas-
sifiers constituted on that concept are therefore robust to small data per-
turbations and normalization procedures, but above all, they are easy to
interpret and analyze.

In this paper, we propose a novel globally induced decision tree in
which node splits are based on the RXA methodology. We have extended
a simple ordering with a more generic concept that also explores frac-
tional relative relations between the genes. To face up to the newly
arisen computational complexity, we have replaced the typical brute
force approach with an evolutionary algorithm. As this was not enough,
we boosted our solution with the OpenMP parallelization, local search
components calculated on the GPU and embedded ranking of genes to
improve the evolutionary convergence. This way we managed to explore
in a reasonable time a much larger solution space and search for more
complex but still comprehensible gene-gene interactions. An empirical
investigation carried out on 8 cancer-related datasets shows the potential
of the proposed algorithm not only in the context of accuracy improve-
ment but also in finding biologically meaningful patterns.
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1 Introduction

Data mining is an umbrella term covering a broad range of tools and tech-
niques for extracting hidden knowledge from large quantities of data. Biomedical
data can be very challenging due to the enormous dimensionality, biological and
experimental noise as well as other perturbations. Unfortunately, many tradi-
tional machine learning algorithm use complex predictive models, which impede
biological understanding and are an obstacle for mature applications [1]. Most
of the research effort tends to focus almost exclusively on the prediction accu-
racy of core data mining tasks (e.g., classification and regression), and far less
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effort has gone into understand and interpret the discovered knowledge. It is not
enough to simply produce good outcomes but to provide logical reasoning just
as clinicians do for medical treatments.

There is a strong need for ‘white box’ computational methods to effectively
and efficiently carry out the predictions using biomedical data. One of the exam-
ple approaches which may actually help in understanding and identifying rela-
tionships between specific features and improve biomarker discovery is the Rel-
ative Expression Analysis (RXA) [9]. It is a powerful collection of easily inter-
pretable algorithms that plays an important role in genomic data classification
[11]. RXA’s key novelty is the use of interactions between a small collection of
genes by examining the relative order of their expressions rather than their raw
values. The influence of RXA solutions could be even greater, however, the sim-
plicity of model decisions which is based only on the plain ordering comparisons
strongly limits the search for other gene-gene relations. Additionally, a typical
exhaustive search performed by most of RXA solutions limits the number of
genes that can be analyzed [16] due to computational complexity.

In this paper, we introduce a new approach for RXA called Evolutionary
Relative Expression Decision Tree (Evo-REDT). We have extended the simple
ordering relations between the genes proposed in RXA with a new more generic
concept. It explores relative fraction comparison in the gene pairs, therefore,
it can identify percent changes in their relations between different expression
profiles. To include also the hierarchical relations between the gene pairs, we have
adapted an evolutionary induced decision tree system called Global Decision
Tree (GDT) [15]. It allows performing a simultaneous search for the tests in the
internal nodes as well as the overall tree structure. In each splitting node of a
tree, we use a test consisting of two genes and a fraction which represents the
ratio (weight) of their relations. Originally, the selection of a top pair in RXA
performs an exhaustive search for all possible order relations between two genes.
Using brute force within the proposed approach is computationally infeasible,
on the other hand, relying only on the evolutionary search may result in a very
slow algorithm convergence. Therefore, we have proposed several improvements
in order to boost our solution, mainly:

– several specialized variants of mutation and crossover operators;
– local search components calculated on the GPU;
– embedded ranking of genes in order to consider the relations based on top

genes more often;
– parallel processing of the individuals of the population using shared memory

(OpenMP) paradigm.

Our main objective is to find in a reasonable time more advanced relations
in comparison to RXA that are more accurate and still easy to understand and
interpret.
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2 Background

Genomic data is still challenging for computational tools and mathematical mod-
eling due to the high ratio of features to observations as well as enormous gene
redundancy and ubiquitous noise. Nearly all off-the-shelf techniques applied
to genomics data [1], such as neural networks, random forests and SVMs are
‘black box’ solutions which often involve nonlinear functions of hundreds or
thousands of genes and complex prediction models. Currently, deep learning
approaches have been getting attention as they can better recognize complex
features through representation learning with multiple layers. However, we know
very little about how such results are derived internally. In this section, we focus
on two concepts which are the main elements of the proposed approach.

2.1 RXA Classification Algorithms

Relative Expression Analysis focuses on finding interactions among a small group
of genes and studies the relative ordering of their expression values. In the pioneer
research [10], authors used ranks of genes instead of their raw values and intro-
duced the Top Scoring Pair (TSP) classifier. It is a straightforward prediction
rule that makes a pairwise comparison of gene expression values and searches
for a single pair of genes with the highest rank. Let xi and xj (0 ≤ i, j < N)
be the expression values of two different genes from available set of genes and
there are only two classes: normal and cancer. First, the algorithm calculates
the probability of the relation xi < xj between those two genes in the objects
from the same class:

Pij(normal) = Prob(xi < xj |Y = normal) (1)

and
Pij(cancer) = Prob(xi < xj |Y = cancer), (2)

where Y denotes the class of the objects. Next, the score for this pair of genes
(xi, xj) is calculated:

Δij = |Pij(normal) − Pij(cancer)|. (3)

This procedure is repeated for all distinct pairs of genes and the pair with the
highest score becomes the top-scoring pair. In the case of a draw, a secondary
ranking that relies on gene expression differences is used [19]. Finally, for a new
test sample, the relation between expression values of the top pair of genes is
checked. If the relation holds, then the TSP predictor votes for the class that has
higher probability Pij in the training set, otherwise it votes for the class with
smaller probability.

There are many extensions of the TSP classifier. The main ones focused on
increasing the number of gene pairs in the predictive model (k-TSP [19]) or
analyzing the order of relationships for more than two genes (TSN [16]). Those
methods were also combined with a typical decision tree algorithm (TSPDT [3])
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in which each non-terminal node of the tree divides instances according to a
splitting rule that is based on TSP or k-TSP accuracy. As one of the main draw-
backs of the aforementioned solutions was the enormous computational complex-
ity resulting from the exhaustive search, various optimization techniques were
proposed. Some of them were based on parallel computing using GPGPU [16],
others used the heuristic approach involving evolutionary algorithms (EA) like
EvoTSP [4]. Finally, there are many variations of ranking and grouping the gene
pairs [9,13] but all the systems inherited the standard RXA methodology based
on the ordering relations.

2.2 Decision Trees

Decision trees have a knowledge representation structure made up of nodes and
branches, where: each internal node is associated with a test on one or more
attributes; each branch represents the test outcome, and each leaf (terminal
node) is designed by a class label. Induction of optimal DT for a given dataset is
a known NP-complete problem. As a consequence, practical DT learning algo-
rithms must be heuristically enhanced. The most popular type of tree induction
is based on a top-down greedy search [14]. It starts from the root node, where the
locally optimal split (test) is searched according to the given optimality measure.
Next, the training instances are redirected to the newly created nodes, and this
process is repeated for each node until a stopping condition is met. Inducing the
DT through a greedy strategy is fast and generally efficient in many practical
problems, but it usually produces overgrown solutions.

Evolutionary induction of decision trees is an alternative to greedy top-down
approaches as it mitigates some of the negative effects of locally optimal deci-
sions [15]. The strength of such an approach lies in a global search for the tree
structure and the tests in the internal nodes. This global induction is much
more computationally complex; however, it can reveal hidden regularities that
are often undetectable by greedy methods. Unfortunately, there are not so many
new solutions in the literature that focus on the classification of genomic data
with comprehensive DT models. In the liteature, there is far more interest in
trees as sub-learners of an ensemble learning approach, such as Random Forests.
These solutions alleviate the problem of low accuracy by averaging or adaptive
merging of multiple trees. However, when modeling is aimed at understanding
basic processes, such methods are not so useful due to the complexity of the
generated rules.

2.3 Motivation

RXA solutions deliberately replace the raw expression data values with sim-
ple ordering relationships between the features. However, in a nutshell, limit-
ing knowledge to the information that expression of one gene xi is larger than
another x2 which has a form of a pair: (xi > xj) may result in a large loss
of potentially important data. We propose an additional fractional component
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called relational weight w, which is the ratio of the genes relation in a pair:
(xi > w ∗ xj).

Let us hypothetically assume that the two genes x1 and x2 have constant
expression values among the instances from the same classes. Figure 1 shows
three simple scenarios (a), (b), (c) of possible relations between genes x1 and
x2 in a normal and cancer class. The RXA algorithms will detect only the pairs
(x1, x2) from the (a) and (b) scenario as “top pairs” because only there the rela-
tion between genes changes between classes. However, the pair from the scenario
(b) should not be considered as a biological switch due to small change of the
genes expression level between classes. Unfortunately, the undoubtedly relevant
pair from the scenario (c) will not be considered by any currently available RXA-
family algorithms despite significant variations in the expression values of genes
in normal and cancer classes. It might choose them together with other genes,
by making multiple top pairs, but besides potential interpretability problems,
lower accuracy issues may also arise. Evo-REDT solution is capable not only of
selecting relevant pairs (scenario (a) and (c)) but also ignoring the ones with
small weight perturbations.

Fig. 1. Possible relations between two genes X1 and X2 in normal and cancer sample
together with biological importance of the pair constituted from that genes

Additionally, RXA enormous computational complexity strongly limits the
number of features and inter-relations that can be analyzed [13]. For regular
RXA exhaustive search, it equals O(T ∗ M ∗ N2), where T is the number of
splitting nodes of DT, M is the number of instances and N is the number of
analyzed genes. Evo-REDT has much higher complexity due to additional search
for the relations weight. For this newly arisen level of complexity, even a standard
evolutionary approach might be not sufficient.

3 Evolutionary Relative Expression Decision Tree

The proposed solution has been integrated into a system called the Global
Decision Tree (GDT). Its overall structure is based on a typical evolutionary
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algorithm (EA) schema [17] with an unstructured population and generational
selection. The GDT framework [15] can be used to induce various types of trees
and its applications also cover biomedical data [6]. We have proposed several
changes in the original GDT solutions, involving the node representation and
overall evolutionary search. The general flowchart of the Evo-REDT solution is
illustrated in Fig. 2.

Fig. 2. General flowchart of the Evo-REDT solution

3.1 Representation, Initialization, Selection

Decision trees are quite complicated structures, in which a number of nodes,
type of the tests and even number of test outcomes are not known in advance.
The GDT system uses a tree-encoding schema in which individuals are repre-
sented in their actual form as potential tree-solutions. A new type of tests in the
splitting nodes is applied. It is constituted from a single pair of genes together
with the weight and has the form (xi > w ∗ xj). Additionally, each node stores
information about training instances related to the node. This allows the algo-
rithm to perform more effectively local modifications of the structure and tests
during the application of genetic operators. Finally, we have embedded infor-
mation about the discriminative power of genes calculated by the external tool
(algorithm Relief-F was used [18]) in a form of ranked list. It is submitted as an
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additional input to Evo-REDT and can be manually modified, for example, to
focus on biomarker genes for a given disease.

In the GDT system, to maintain a balance between exploration and exploita-
tion, initial individuals are created by using a simple top-down algorithm with
randomly selected sub-samples of original training data. Before initialization, the
dataset is first copied from the CPU main memory to the GPU device memory
so each thread block can access it (see Fig. 2). It is performed only once before
starting the tree induction as later only the indexes of the instances that are
located in a calculated node are sent.

The selection mechanism is based on a ranking linear selection [17] with
the elitist strategy, which copies the best individual founded so far to the next
population. Evolution terminates when the fitness of the best individual in the
population does not improve during a fixed number of generations (default: 100)
or a maximum number of generations is reached (default: 1000).

3.2 Genetic Operators

To preserve genetic diversity, the GDT system applies two specialized genetic
meta-operators corresponding to the classical mutation and crossover. Both oper-
ators may have a two-level influence on the individuals as either decision tree
structure or a test in the splitting node can be modified. Depending on the
position in the tree, different aspects are taken into account to determine the
crossover or mutation point. If the change considers the overall structure, the
level of the tree is taken into account. The modification of the top levels is per-
formed less frequently than the bottom parts as the change would have a much
bigger, global impact. The probability of selection is proportional to the rank in
a linear manner. Examples of such variants are adding/deleting a node in the
case of mutation and tree-branch crossover.

If the change considers the tests in the splitting nodes their quality is taken
into account like the ones with the higher error, per instance, are more likely
to be changed. In the case of mutation, it can be replacing a pair of genes with
a new one or changing a single gene in a test. The first two variants require
updating the weight between two genes that constitute a test. Additionally, in
both variants, we use the gene ranking that determines which new genes will
appear in the test. This way top genes from the dataset are considered more
often in the population. Crossover variants allow whole tests to exchange as well
as randomly selected genes from the pairs between the individuals.

3.3 Fitness Function

DTs are at some extent prone to overfitting [14]. In typical top-down induction,
this problem is partially mitigated by performing a stop condition and applying
post-pruning. In the case of evolutionary induced DT, this problem may be
controlled by a multi-objective fitness function in order to maximize the accuracy
and minimize the complexity of the output tree. In this work, we decided to use
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a simple weight formula, but measure the tree complexity in a different way. The
Evo-REDT system maximizes the following fitness function:

Fitness(T ) = Q(T ) − α ∗ Rank(T ), (4)

where: Q(T ) is the accuracy calculated on the training set, Rank(T ) is the sum
of the ranks of attributes constituting tests and α is the relative importance
of the complexity term (default value is 0.05) and a user supplied parameter.
As we can see, instead of using the number of leaves or nodes, we measure the
sum of the ranks of the attributes that constitute the tests in the internal nodes
provided by the external Relief-F algorithm. This way the attributes with the
higher rank are more likely to be used in the prediction model.

3.4 Parallelization

The GDT system supports various parallelization techniques [5,15]. However,
in the context of biomedical data mining where the number of instances is low,
using only the data-parallel decomposition strategy will not be effective [12]. We
propose a hybrid approach with shared address space (OpenMP) paradigm and
graphics processing units (GPU)-based parallelization. The individuals from the
population are spread over the CPU cores using OpenMP threads. Each OpenMP
thread is reponsible for subsequent algorithm blocks (genetic operator, evalution,
etc.) for the assigned pool of individuals. This way, the individual are processed
in parallel on the CPU.

The GPU parallelization is applied in a different way. When the mutation
operator updates or calculates a new test in a splitting note, a local search for
the top gene pair is performed. Each thread on the device is assigned an equal
amount of relations (called offset) to compute so it ‘knows’ which relations of
genes it should analyze and where it should store the result. However, finding a
relation xi > w ∗xj for a given set of instances that reached a particular node is
still computationally demanding. That is why the first attribute is selected by
the CPU which together with offset and indexes to the instances are sent to the
GPU. Each thread in each block calculates the primary ranking which involves
the number of times the relation holds in one of the classes and not in another
one. The secondary ranking is a draw breaker, which is based on the differences
in the weight relations in each class and object. The weight w of the top pair
equals to xi/xj of the instance in which relation simultaneously distinguishes
the instances from different classes and is the lowest among the instances from
the same class. The weight can also be smoothed to e.g. a single precision value
or even rounded to an integer in order to improve comprehensibility and at some
extent the overall generalization (default: 0.5). After all block threads finished,
the results are copied from the GPU device memory back to the CPU main
memory and sorted according to the rank. Simplified ranking linear selection is
used to select the pair of genes that will constitute the test in the splitting node.
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4 Experimental Validation

Experimental analysis to evaluate the relative performance of the proposed app-
roach is performed using several cancer-related gene expression datasets. We
confront the Evo-REDT with popular RXA extensions as well as outline other
algorithm characteristics.

4.1 Inducers, Datasets and Settings

To make a proper comparison with the RXA algorithms, we use the same 8
cancer-related benchmark datasets that were tested with the EvoTSP solution
[4]. Datasets are deposited in NCBI’s Gene Expression Omnibus and summa-
rized in Table 1. A typical 10-fold cross-validation is applied and following RXA
algorithms are confronted:

– TSP, TST, and k-TSP were calculated with the AUERA software [8];
– EvoTSP results were taken from the publication [4];
– original TSPDT and Evo-REDT implementations are used.

Table 1. Details of gene expression datasets: abbreviation with name, number of genes
and number of instances.

Datasets Genes Instances Datasets Genes Instances

(a) GDS2771 22215 192 (e) GSE10072 22284 107

(b) GSE17920 54676 130 (f) GSE19804 54613 120

(c) GSE25837 18631 93 (g) GSE27272 24526 183

(d) GSE3365 22284 127 (h) GSE6613 22284 105

In all experiments, a default set of parameters for all algorithms is used in all
tested datasets and the presented results correspond to averages of several runs.
Evo-REDT uses recommended GDT settings that were experimentally evaluated
and given in details in GDT framework description [15], e.g.: population size:
50, mutation rate 80%, crossover rate 20%.

Due to the performance reasons concerning other approaches, the Relief-F
feature selection was applied and the number of selected genes was arbitrarily
limited to the top 1000. Experiments run on the workstation equipped with Intel
Core i5-8400 CPU, 32 GB RAM, and NVIDIA GeForce GTX 1080 GPU card
(8 GB memory, 2 560 CUDA cores). The sequential algorithm was implemented
in C++ and the GPU-based parallelization part was implemented in CUDA-C
(compiled by nvcc CUDA 10; single-precision arithmetic was applied).
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Table 2. Inducers accuracy and size comparison, best for each dataset is bolded

Dataset TSP TST k-TSP EvoTSP TSPDT Evo-REDT

Acc. Acc. Acc. Size Acc. Size Acc. Size Acc. Size

(a) 57.2 61.9 62.9 10 65.6 4.0 60.1 15.4 72.9 ± 8.0 8.2 ± 1.1

(b) 88.7 89.4 90.1 6.0 96.5 2.1 98.2 1.0 98.2 ± 5.7 2.2 ± 0.4

(c) 64.9 63.7 67.2 10 78.1 2.8 72.3 5.8 76.2 ± 9.9 7.3 ± 1.4

(d) 93.5 92.8 94.1 10 96.2 2.1 88.3 2.0 94.2 ± 8.8 2.8 ± 0.9

(e) 56.0 60.5 58.4 14 66.9 3.1 68.1 4.7 73.0 ± 10.9 6.0 ± 0.8

(f) 47.3 50.1 56.2 18 66.2 2.7 67.2 10.9 74.3 ± 6.2 7.9 ± 1.0

(g) 81.9 84.2 87.2 14 86.1 4.1 88.6 3.3 91.5 ± 8.5 3.9 ± 0.7

(h) 49.5 51.7 55.8 10 53.6 6.1 59.6 7.0 70.5 ± 16.9 8.4 ± 1.0

Average 67.4 69.3 71.5 11.5 76.2 2.7 75.3 6.2 81.3 ± 9.4 5.8 ± 0.9

4.2 Accuracy Comparison of Evo-REDT to Popular RXA
Counterparts

Table 2 summarizes classification performance for the proposed solution and its
competitors. The model size of TSP and TST is not shown as it is fixed and
equals correspondingly 2 and 3. Both, the evolutionary TSP approach called
EvoTSP, as well as a top-down induced RXA decision tree TSPDT, are out-
performed by the proposed Evo-REDT solution. The statistical analysis of the
obtained results using the Friedman test and the corresponding Dunn’s multi-
ple comparison test (significance level/p-value equals 0.05), as recommended by
Demsar [7] showed that the differences in accuracy are significant. We have also
performed an additional comparison between the datasets with the corrected
paired t-test with the significance level equals 0.05 and 9 degrees of freedom
(n-1 degrees of freedom where n = 10 folds). It showed that Evo-REDT signifi-
cantly outperforms all algorithms on more than half datasets. What is important,
the trees induced by the Evo-REDT are not only accurate but also relatively
small and simple. This indicates that the model managed to find more deep
interaction and sub-interaction between the genes.

4.3 Evo-REDT Characteristics

To improve the overall generalization of Evo-REDT as well as the model com-
prehensibility, we have checked how rounding the weight relation between the
genes impacts the results. Experimental results showed that there were no sta-
tistical differences between algorithms with 0.1, 0.5 respectively, and without
rounding weights. Therefore, in Evo-REDT we used a default 0.5 rounding for
the weight relation. An example of tree induced for the first dataset (GDS2771)
is illustrated in Fig. 3. We can observe, that Evo-REDT found splitting pairs
with various weights and the induced tree is small and easily interpretable.

In this section, we would also like to share some of the preliminary results
to verify if the trees induced by the Evo-REDT are somehow useful. By using
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Fig. 3. An example decision tree induced by Evo-REDT with rounded to 0.5 weights
for lung cancer data (GDS2771)

the GDS2771 dataset description available on GenBank NCBI [2] we performed
a brief examination of our predictor (see Fig. 3). To check if genes found in
the splitting nodes have some biological meaning we have decoded gene names
from GDS2771 with GPL96 platform provided by NCBI (in the Figure genes are
encoded as Affymetrix Probe Set ID). We found out that 2 out of 9 genes are
directly related to lung cancer, another 2 were discussed in several papers while
the remaining 5 were also visible in the medical literature. This is only an exam-
ple of a fraction of knowledge discovered by Evo-REDT but even the presented
model is at some point supported by biological evidence in the literature.

Much effort in this paper was put into improving the speed of the proposed
solution. Table 3 shows the average calculation time for a single dataset with-
out any parallel calculations and with OpenMP and/or GPU enabled. We also
include the approximate induction time of other algorithms (if provided) for illus-
tration purposes only. We cannot compare the results as the machines, software,
etc. may be significantly different. However, with additional embedded feature
ranking we managed to improve the EA convergence and reduce the number of
required iterations which equals 1000 whereas for EvoTSP it is 10 times higher.

As expected, the sequential version of the algorithm is much slower than
the rest of the Evo-REDT variants from Table 3. It should be noted that GPU-
accelerated Evo-REDT may be applied to much larger gene expression datasets
without any feature selection. The potential of the GPU parallelization was
not fully utilized within performed experiments due to the limited number of
features.

Table 3. Average time in seconds for the algorithm to train a model

Algorithm Evo-REDT TSP TST TSPDT EvoTSP

Seq. OpenMP OpenMP+GPU

Time 637 171 110 2.1 712 152 2700
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5 Conclusions

Finding simple decision rules with relatively high prediction power is still a major
problem in biomedical data mining. Our new approach called Evo-REDT tackles
this problem with a more generic approach of finding fractional relative rela-
tions between the genes. The proposed solution is composed of evolutionary DT
inducer and extended concept of RXA. Our implementation covers multiple opti-
mizations including OpenMP and GPU parallelizations as well as incorporates
knowledge about the discriminative power of genes into the evolutionary search.
Performed experiments show that the knowledge discovered by Evo-REDT is
accurate, comprehensible and the model training time is relatively short.

We see many promising directions for future research. In particular, we are
currently working with biologists and bioinformaticians to better understand
the gene relations generated by Evo-REDT. Next, there is still a lot of ways to
extend the tree representation e.g. by using more than one pair of genes in the
splitting nodes. Optimization of the approach can also be improved e.g. load-
balancing of tasks based on the number of instances in each node, simultaneous
analysis of two branches, better GPU hierarchical memory exploitation. Finally,
we want to validate our approach using proteomic and metabolomic data as well
as integrated multi-omics datasets.
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