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Abstract. In the paper we propose a new evolutionary algorithm for
induction of univariate regression trees that associate leaves with sim-
ple linear regression models. In contrast to typical top-down approaches
it globally searches for the best tree structure, tests in internal nodes
and models in leaves. The population of initial trees is created with
diverse top-down methods on randomly chosen subsamples of the train-
ing data. Specialized genetic operators allow the algorithm to efficiently
evolve regression trees. Akaike’s information criterion (AIC) as the fit-
ness function helps to mitigate the overfitting problem. The preliminary
experimental validation is promising as the resulting trees can be signifi-
cantly less complex with at least comparable performance to the classical
top-down counterparts.

Keywords: Model trees, evolutionary algorithms, regression trees, AIC,
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1 Introduction

Data mining [7] is a process of extracting useful information, relationships and
hidden patterns in large databases. One of data mining techniques is predic-
tive modeling also known as supervised prediction or supervised learning. The
most common predictive task in data mining applications besides classification
is regression. Regression and model trees are now popular alternatives to classi-
cal statistical techniques like standard regression or logistic regression [10]. The
tree-based approaches are gaining in popularity because of their ease of applica-
tion, fast operation and effectiveness. Additionally, the hierarchical tree structure
closely resembles a human way of decision making which makes regression trees
natural and easy to understand even for inexperienced analysts.

Recently many regression and model tree systems have been proposed. One
of the first solutions was presented in the seminal book describing the CART
system [4]. CART algorithm finds a split that minimizes the sum of squared
residuals of the model when predicting and builds a piecewise constant model
with each terminal node fitted by the training sample mean. In the next years
multiple authors improve upon the accuracy of regression trees by replacing the
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single predicted values in the leaves by more advanced models (e.g. linear). M5
[20], SECRET [6], SMOTI [15] or RT [21] are some of the model tree algorithms
that have been proposed.

All aforementioned systems induce regression and model trees in a top-down
approach. Starting from the root node they search for the locally optimal split
(test) according to the given optimality measure and then the training data is
redirected to newly created nodes. This procedure is recursively repeated until
the stopping criteria are met. Finally, the post-pruning is applied to improve the
generalization power of the predictive model. Such a greedy technique is fast and
generally efficient in many practical problem, but obviously does not guarantee
the globally optimal solution. It can be expected that a more global induction
could be more adequate in certain situations.

In this paper we want to investigate a global approach to model tree induction
based on a specialized evolutionary algorithm. Our work covers the induction
of univariate regression tree with simple linear models in leaves. The proposed
solution may be applied to the problems that are primarily concerned with the
regression of an outcome onto a single predictor. As an example the original
genetic epidemiology problem required only consideration of simple linear re-
gression models like [19] to locate genes associated with a quantitative trait
of interests. There are other systems that associate leaves with simple linear
regression like the one described by Alexander and Grimshaw [1] called Treed
Regression.

Previously performed research showed that evolutionary inducers are capable
to efficiently induce various types of classification trees: univariate [11], oblique
[12] and mixed [13]. In our last paper we applied a similar approach to obtain
accurate and compact regression trees [14]. In this work we would like to extend
standard regression trees by replacing single predicted values (means) in leaves
by simple linear models. Additionally, the search for an optimal structure was
modified and now is driven by the Akaike’s information criterion (AIC) [2].

The rest of the paper is organized as follows. In the next section a new evo-
lutionary algorithm for global induction of univariate model trees is described.
Experimental validation of the proposed approach on artificial and real-life data
is presented in section 3. In the last section, the paper is concluded and possible
future works are sketched.

2 Evolutionary Induction of Model Trees

In the proposed approach the general structure of the system follows a typical
framework of evolutionary algorithms [16] with an unstructured population and
a generational selection.

2.1 Representation

Model trees are represented in their actual form as classical univariate trees.
Each test in a non-terminal node concerns only one attribute (nominal or con-
tinuous valued). Additionally, in every node information about learning vectors
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associated with the node is stored. This enables the algorithm to perform more
efficiently local structure and tests modifications during applications of genetic
operators.

In a case of a continuous-valued feature typical inequality tests are applied.
As potential splits only precalculated candidate thresholds are considered. A
candidate threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples are characterized by different predicted values.
Such a solution significantly limits the number of possible splits and focuses the
search process. For a nominal attribute at least one value is associated with each
branch. It means that an inner disjunction is built into the induction algorithm.

A simple linear model is calculated at each terminal node of the model tree
using standard regression technique [17]. A dependent variable Y is modeled as
a linear function of single variable X:

Y = β0 + β1 ∗ X (1)

where X is one of the independent variables, β0 is the intercept and β1 is the
slope of the regression line that minimizes the sum of squared residuals of the
model.

2.2 Initialization

Like in M5 approach [20] we first learn a standard regression tree (with con-
stants in the leaves) and only afterwards we turn it into a model tree. Initial
individuals are created by applying the classical top-down algorithm to ran-
domly chosen subsamples of the original training data (10% of data, but not
more than 500 examples). Additionally, for every initial tree one of three test
search strategies in non-terminal nodes is applied. Two strategies come from the
very well-known regression tree systems i.e. CART [4] and M5 [20] and they are
based on Least Squares or Least Absolute Deviation. The last strategy is called
dipolar, where a pair of feature vectors (dipole) is selected and then a test is con-
structed which splits this dipole. Selection of the dipole is randomized but longer
(with bigger difference between dependent variable values) dipoles are preferred
and mechanism similar to the ranking linear selection [16] is applied. The recur-
sive partitioning is finished when all training objects in a node are characterized
by the same predicted value (or it vary only slightly [20]), the number of objects
in a node is lower than the predefined value (default value: 5) or the maximum
tree depth is reached (default value: 10).

One of two search strategies of predicted variable used in linear model at
leaves is applied. First one calculates simple linear regression model for each
attribute and applies the one that minimizes the sum of squared residuals of the
linear regression model. In second strategy the simple linear model is built from
training objects in this leaf on the randomly chosen independent variable.



Globally Induced Model Trees: An Evolutionary Approach 327

2.3 Termination Condition

When the fitness of the best individual in the population does not improve
during the fixed number of generations (default value is equal 1000) the evolution
terminates. Additionally maximum number of generations is specified, which
allows limiting the computation time in case of a slow convergence (default
value: 5000).

2.4 Genetic Operators

In our previous paper [14] we have presented two specialized genetic operators
corresponding to the classical mutation and cross-over. We have extended them
due to simple linear model in leaves.

Application of both operators can result in changes of the tree structure, tests
in non-terminal and models in terminal nodes. After applying any operator it is
usually necessary to relocate learning vectors between parts of the tree rooted in
the altered node. This can cause that certain parts of the tree does not contain
any learning vectors and has to be pruned.

Mutation operator. A mutation-like operator is applied with a given prob-
ability to a tree (default value is 0.8) and it guarantees that at least one node
of the selected individual is mutated. Firstly, the type of the node (leaf or in-
ternal node) is randomly chosen with equal probability and if a mutation of a
node of this type is not possible, the other node type is chosen. A ranked list of
nodes of the selected type is created and a mechanism analogous to ranking lin-
ear selection is applied to decide which node will be affected. While concerning
internal nodes, the location (the level) of the node in the tree and the quality
of the subtree starting in the considered node are taken into account. It is ev-
ident that modification of the test in the root node affects whole tree and has
a great impact, whereas mutation of an internal node in lower parts of the tree
has only a local impact. In the proposed method, nodes on higher levels of the
tree are mutated with lower probability and among nodes on the same level the
absolute error calculated on the learning vectors located in the subtree is used
to sort them. As for leaves, only absolute error is used to put them in order, but
homogenous leaves are not included. As a result, leaves which are worse in terms
of accuracy are mutated with higher probability.

Modifications performed by mutation operator depend on the node type (i.e.
if the considered node is a leaf node or an internal node). For a non-terminal
node a few possibilities exist:

– A completely new test can be found by means of the dipolar method used
for the initialization;

– The existing test can be altered by shifting the splitting threshold (continuous-
valued feature) or re-grouping feature values (nominal features);

– A test can be replaced by another test or tests can be interchanged;
– One sub-tree can be replaced by another sub-tree from the same node;
– A node can be transformed (pruned) into a leaf.
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After performed mutation in internal nodes the models in corresponding leaves
are not recalculated for performance reasons. However, adequate linear models
can be found while performing the leaves mutations. Modifying a leaf makes
sense only if it contains objects with different dependent variable values. For a
terminal node two possibilities exists:

– The leaf is transformed into an internal node and a new test is chosen in the
aforementioned way;

– Simple linear model is replaced by other one that is calculated on different
predictor variable.

Cross-over operator. In the proposed solution there are three variants of
recombination. All of them start with selecting of cross-over positions in two
affected individuals. One node is chosen randomly in each of two trees. In the
most straightforward variant, the subtrees starting in the selected nodes are
exchanged. This corresponds to the classical cross-over from genetic program-
ming. In the second variant, which can be applied only when non-internal nodes
are randomly chosen and the numbers of outcomes are equal, only tests asso-
ciated with the nodes are exchanged. The third variant is also applicable only
when non-internal nodes are drawn and the numbers of descendants are equal.
Branches which start from the selected nodes are exchanged in random order.

2.5 Selection

As a selection mechanism the ranking linear selection is applied. Additionally,
the individual with the highest value of the fitness function in the iteration is
copied to the next population (elitist strategy).

2.6 Fitness Function

A fitness function drives the evolutionary search process and is very important
and sensitive component of the algorithm. When concerning any prediction task
it is well-known that the direct minimization of the prediction error measured
on the learning set leads to an overfitting problem. In a typical top-down induc-
tion of decision trees, the over-specialization problem is partially mitigated by
defining a stopping condition and by applying a post-pruning. In our previous
work [14] the search for an optimal structure was embedded into the evolution-
ary algorithm by incorporating a complexity term into the fitness. This term
worked as a penalty for increasing the tree size, however, there were no optimal
value of it for all possible datasets.

In presented approach, we decided to use Akaike’s information criterion (AIC)
[2] as the fitness in the search for an optimal structure. This measure of the
goodness of fit of an estimated statistical model works as a penalty for increasing
the tree size.
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The fitness function is minimized and for binary regression tree models has
the following form:

FitnessAIC(T ) = −2 ∗ ln(L(T )) + 2 ∗ k(T ) (2)

where L(T ) is the maximum of the likelihood function of the tree T and k(T )
is the number of model parameters in the tree. Log(likelihood) function L(T ) is
typical for regression models [9] and can be expressed as

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1] (3)

where SSe(T ) is the sum of squared residuals of the tree T and n is the number
of observations. The term, 2 ∗ k(T ) can also be viewed as a penalty for over-
parametrization. In our approach we set k(T ) = Q(T ) + 1 in AIC criterion
where Q(T ) is equal a number of terminal nodes in model tree T . Then, the
fitness function is:

FitnessAIC(T ) = n(ln(2π) + ln(SSe(T )/n(T )) + 1) + 2(Q(T ) + 1) (4)

In [10] authors suggested that the effective number of parameters estimated is
actually much higher than Q(T ) + 1 due to the split rule selections that were
made during the T tree construction process. However, higher k(T ) value in AIC
criterion leads to the smaller trees with less predictive accuracy. Further research
to determine the appropriate value of complexity penalty term in the AIC crite-
rion for proposed solution is required and other commonly used measures such as
Bayesian information criterion (BIC) [18] or structural risk minimization (SRM)
[5] should be considered.

3 Experimental Validation

Validation of the global approach to induction of model trees (denoted in tables
as GMT) was performed on synthetical and real-life datasets. Obtained results
are compared with two model trees and two regression trees. For the purpose of
comparison, we have implemented the top-down regression model with simple
linear regression in each leaf alike to Treed Regression [1] algorithm (denoted as
TR). However, for better performance we have improved pruning to the AIC
cost-complexity pruning proposed in [22]. We also present the results for more
advanced model tree M5 [20] proposed by Quinlan.

For real-life datasets results obtained by the classical top-down inducer REP-
Tree, which is publicly available in the Weka system [8], are also presented. REP-
Tree builds a regression tree using variance and prunes it using reduced-error
pruning (with backfitting). Finally, we enclose the results of global induction of
regression tree approach (denoted as GRT) from our previous work [14].

Each system run with default values of parameters. All results presented in
the table correspond to averages of 10 runs and were obtained by using test sets
(when available) or by 10-fold cross-validation. The average number of nodes is
given as a complexity measure of regression and model trees.
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Fig. 1. Examples of artificial datasets (armchair2 - left, ski jump - right)

Synthetical datasets. First group of experiments was performed on two simple
artificially generated datasets with analytically defined decision borders. Both
datasets contain a dependent feature that is linearly dependent with one of two
independent features. One thousand observations for each dataset were divided
into a training set (33.3% of observations) and testing set (66.7%).

Illustrated in figure 1 armchair2 function is defined as:

g(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

x + 1 x ∈ [0, 1]
−x − 6 x ∈ [4, 5]
−0.5y + 1.5 x ∈ [1, 4], y ∈ [0, 3]
3y − 9 x ∈ [1, 4], y ∈ [3, 5]

(5)

and the ski jump function:

g(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x + 1 x ∈ [0, 1], y ∈ [0, 1]
−2x + 2 x ∈ [0, 1], y ∈ [1, 2]
−3x + 3 x ∈ [0, 1], y ∈ [2, 3]
−4y + 4 x ∈ [1, 2], y ∈ [0, 1]
2y − 2 x ∈ [1, 2], y ∈ [1, 2]
3y − 4 x ∈ [1, 2], y ∈ [2, 3]
x − 2 x ∈ [2, 3], y ∈ [0, 1]
2x − 4 x ∈ [2, 3], y ∈ [1, 2]
3x − 6 x ∈ [2, 3], y ∈ [2, 3]

(6)

Table 1. Results obtained on the synthetical datasets armchair2 and ski jump. Root
mean squared error (RMSE) is given as the error measure and number of nodes as the
tree size.

GMT M5 TR
Dataset RMSE Tree size RMSE Tree size RMSE Tree size

armchair2 0.12 6.5 0.37 11.0 0.35 24.0
ski jump 0.30 10.9 0.61 26.0 0.54 25.0
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Fig. 2. Examples of model trees for armchair2 (GMT - left, TR - right) from the
experiment

Table 1 presents obtained results only for model trees as the regression trees on
those synthetic datasets are not competitive due to the training sample mean in
terminal nodes.

It should be noticed that in both cases trees obtained by GMT have optimal
or almost optimal structure and gain very small error. For the top-down inducers
both problems were too difficult. M5 and TR generated overgrown trees and as
a result the testing error is higher. Additionally, the reason why M5 model tree
performed lower than TR is that the M5 tried to use both independent features
in linear model at leaves.

The advantage of the global approach can be observed in the in figure 2 where
the optimal model trees for GMT and TR on the first dataset armchair2 are
illustrated. We can see that the first split which minimizes the sum of squared
residuals (y < 3) is not optimal as it leads to overgrown tree.

Real-life datasets. In the second series of experiments, several datasets taken
from UCI Machine Learning Repository [3] or provided by L. Torgo on his web-
site are analyzed to assess the performance of the proposed system in solving
real-life problems. Table 2 presents characteristics of investigated datasets and
obtained results. More complex model trees like M5 or SMOTI were not in-
cluded in these experiments as in this paper we are focussing on comparing the
improvement of global induction for regression trees and model trees that as-
sociate leaves with simple linear regression. We plan to extend evolving model
trees with multivariate linear regression so it will be possible to compare with
more advanced modeling trees.

It can be observed that the prediction accuracy of model trees that associate
leaves with simple linear regression models is comparable to regression trees
that have training sample mean in terminal nodes. It is not surprising that size
of the trees are smaller in favor to model trees however, it should be noticed
that globally induced trees are less complex. Proposed solution GMT performed
better on 8 out of 10 datasets comparing to TR and 9 out of 10 comparing
to REPTree in term of accuracy. Tree size for GMT was lower on almost all
datasets.
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Table 2. Characteristics of the real-life datasets (number of objects/number of numeric
features/number of nominal features) and obtained results. Root mean squared error
(RMSE) is given as the error measure and number of nodes as the tree size.

GMT TR GRT REPTree
Dataset Properties RMSE size RMSE size RMSE size RMSE size

Abalone 4177/7/1 2.297 7.7 2.636 10.9 2.314 51.8 2.358 201
Auto-Mpg 392/4/3 3.434 9.9 3.670 73.5 3.572 45.4 3.646 94
Auto-Price 159/17/10 2507.6 3.7 2433.9 9.9 2618.9 13.8 2760.5 32
Delta Ailerons 7129/6/0 0.000178 11.1 0.000185 7.2 0.000179 82.6 0.000175 291
Delta Elevators 9517/6/0 0.00150 9.3 0.00157 16.2 0.00148 78.3 0.00150 319
Housing 506/14/0 4.322 9.1 4.495 11.8 4.126 32.3 4.84 41
Machine CPU 209/7/0 67.53 3.8 78.18 11.3 63.99 14.8 92.34 15
Pyrimidines 74/28/0 0.1090 4.52 0.0987 5.8 0.1011 10.7 0.1355 1.0
Triazines 186/61/0 0.1405 4.7 0.1564 3.9 0.1387 13.7 0.1517 7.0
Wisconsin Cancer 194/32/0 34.33 3.1 35.13 1.9 39.22 16.3 35.88 9.0

4 Conclusion

In the paper a new global approach to model tree learning is presented. In con-
trast to classical top-down inducers, where locally optimal tests are sequentially
chosen, both the tree structure, tests in internal nodes and models in leaves are
searched in the same time by specialized evolutionary algorithm. This way the
inducer is able to avoid local optima and to generate better predictive model.
Even preliminary experimental results show that the globally evolved regression
models could be competitive compared to the top-down based counterparts, es-
pecially in term of tree size.

The presented approach is constantly improved and currently we are working
on introducing oblique tests in the non-terminal nodes. On the other hand,
we plan to extend the knowledge representation by evolving model trees with
multivariate linear regression. However, the proposed solution may be applied
to the problems that are primarily concerned with the regression of an outcome
onto a single predictor.
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12. Krȩtowski, M., Grześ, M.: Evolutionary Learning of Linear Trees with Embedded
Feature Selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M.
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