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Abstract. The rapid development of new technologies and parallel
frameworks is a chance to overcome barriers of slow evolutionary induc-
tion of decision trees (DTs). This global approach, that searches for the
tree structure and tests simultaneously, is an emerging alternative to
greedy top-down solutions. However, in order to be efficiently applied to
big data mining, both technological and algorithmic possibilities need to
be fully exploited. This paper shows how by reusing information from
previously evaluated individuals, we can accelerate GPU-based evolu-
tionary induction of DTs on large-scale datasets even further. Noting
that some of the trees or their parts may reappear during the evolution-
ary search, we have created a so-called repository of trees (split between
GPU and CPU). Experimental evaluation is carried out on the exist-
ing Global Decision Tree system where the fitness calculations are del-
egated to the GPU, while the core evolution is run sequentially on the
CPU. Results demonstrate that reusing information about trees from
the repository (classification errors, objects’ locations, etc.) can acceler-
ate the original GPU-based solution. It is especially visible on large-scale
data where the cost of the trees evaluation exceeds the cost of storing
and exploring the repository.

Keywords: Evolutionary algorithms · Decision trees · Big data
mining · Graphics processing unit (GPU) · CUDA

1 Introduction

Decision trees (DTs) [9] are one of the most useful supervised learning meth-
ods for classification. During over 50 years of their applications [12], they were
mainly induced using greedy heuristics like a top-down approach [16]. Involv-
ing evolutionary algorithms (EAs) into the trees induction [2] was a breath of
fresh air. However, evolutionary tree induction is much more computationally
demanding, and there were raised many questions of the time efficiency of such
an approach. Nevertheless, evolutionary induced DTs have managed to gain in
popularity for less demanding data mining problems for which the generation
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time of the prediction model was not crucial. Their main advantage is the global
approach in which a tree structure, tests in internal nodes and predictions in
leaves are searched simultaneously [10]. As a result, the generated trees are sig-
nificantly simpler and at least as accurate as the greedy alternatives that are
based on the classical divide and conquer schema.

Rapid development of new computational technologies and parallel frame-
works is a chance to conquer the barriers concerning slow evolutionary DT
induction [7]. To make it work, proposed new solutions need to be efficient
for large-scale data and run on relatively cheap and generally available hard-
ware/software. For these reasons, we have concentrated on using graphics pro-
cessing units (GPU)s to parallelize and speed up the induction.

This paper focuses on accelerating a GPU-based evolutionary induction of
classification trees [8] for the large-scale data. In the approach, the main evo-
lutionary loop (selection, genetic operators, etc.) is performed sequentially on
a CPU, while the most time-consuming operations like fitness calculation are
delegated to a GPU. Noting that some of the trees or their parts may reappear
during the evolutionary search, we examine if it is worth to store and reuse this
information. In this paper, we introduce a concept of a repository of previously
evaluated DTs in order to limit fitness recalculation of the new ones founded by
EA. The search of the same (or similar) individuals is performed fully on the
GPU where they are stored as a part of the repository. The second part of the
repository, which gathers the corresponding fitness results, is located on the CPU
in order to limit CPU/GPU memory transfers. The reuse strategy is not new in
EA; however, it was studied in the context of improving the genetic diversity [3]
(e.g., by chromosome revisiting) and it was not applied to DTs induction.

The next section provides a brief background on DTs and the Global Decision
Tree (GDT) system which is used to test the proposed solution. Section 3 presents
our approach, and Sect. 4 shows its experimental validation. In the last section,
the paper is concluded and possible future work is outlined.

2 Evolutionary Induction of Decision Trees

Decision trees [9] (DTs) have a knowledge representation structure that is built
of nodes and branches, where each internal node holds a test on one or more
attributes; each branch represents the outcome of a test; and each leaf (terminal
node) holds a prediction. Such a hierarchical tree structure, where appropri-
ate tests from consecutive nodes are sequentially applied, closely resembles the
human way of making decisions. The success of tree-based approaches can be
explained by their ease of application, fast operation, and effectiveness. Never-
theless, the execution times and resource utilization still require improvement to
meet ever-growing computational demands.

Evolutionary algorithms [14] (EAs) belong to a family of meta-heuristic
methods. They represent techniques for solving a wide variety of difficult opti-
mization problems. The framework of EA is inspired by biological mechanisms
of evolution. The algorithm operates on individuals that compose a current pop-
ulation. Each individual represents a candidate solution to the target problem.
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Individuals are assessed using a fitness function that measures their performance.
Next, individuals with higher fitness usually have a higher probability of being
selected for reproduction. Genetic operators such as mutation and crossover
influence individuals, thereby producing new offspring(s). This guided random
search (the offspring usually inherits some traits from its ancestors) is stopped
when some convergence criteria is satisfied.

Typically, DTs are induced by a top-down approach [16] that realises the
classical divide and conquer schema. The main consequences of locally optimal
choices made in each tree node during the induction are overgrown and often less
stable DT classifiers. Emerging alternatives to the top-down solutions include
primarily EAs. Their global approach limits the negative effects of locally optimal
decisions but it is much more computationally demanding [2,6].

2.1 Parallelization of DTs Induction

Fortunately, EAs are naturally prone to parallelism and the artificial evolution
can be implemented in various ways [4]. There are at least three main strategies
that have been studied to parallelize EAs: master-slave model, island model
and cellular model. Since EAs work on a set of independent solutions, it is
relatively easy to distribute the computational load among multiple processors
through a data or/and population decomposition approach. Recent research on
the parallelization of various evolutionary computation methods has seemed to
focus on GPUs as the implementation platform [10,18]. The popularity of GPUs
results from their general availability, relatively low cost and high computational
power.

In the context of parallelization of DTs induction, not enough has been done
and the GPGPU topic has hardly been studied in the literature at all. There are
several GPU-based parallelizations but they consider either greedy inducers [11]
or random forests [13]. As for evolutionary induced DTs, we found only a few
papers that cover parallel extensions of the Global Decision Tree (GDT) data
mining system: using MPI/OpenMP [5], GPU [8] and Spark [15]. One of the
possible reasons why this topic has not yet been adequately explored by other
systems is that the straightforward EA parallelization of DT induction may be
insufficient. In order to achieve high speedup and exploit the full potential of
e.g., GPU parallelization, there is a strong need to incorporate knowledge about
DT specificity and its evolutionary induction.

2.2 Global Decision Tree System

This paper uses the GDT system [10] which supports various decision trees, and
it has been already studied in terms of parallelism. Another benefit of the GDT
system is that its scheme follows a typical EA framework [14] with an unstruc-
tured, fixed size population and a generational selection. In this study, we have
deliberately limited the GDT description to a univariate binary classification
tree version to facilitate understanding and to eliminate less important details.
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Individuals in the population are not specially encoded and are represented
and processed in their actual form as univariate classification trees. This is the
most popular and basic variant of DTs that uses typical inequality tests with two
outcomes in the internal nodes. Initialization is performed with a simplified top-
down manner, which is applied to randomly selected small sub-samples of the
learning data. Tests in the internal nodes are created by randomly selecting two
objects from different classes (mixed dipole) that are located in the considered
node [10]. Then, an effective test that separates these two objects into subtrees
is randomly created, considering attributes only with different feature values.

In order to preserve population diversity, the GDT system applies two spe-
cialized genetic meta-operators corresponding to the classical mutation and
crossover. For both operators framework provides several variants [10] that influ-
ence the tree structure and the splitting tests in the internal nodes, e.g.: (i)
replace subtree/branch/node/test between two affected individuals; (ii) prune
the internal node into the leaf; (iii) modify the test in internal nodes (shift
threshold); (iv) replace existing test with a new one created on a randomly
chosen dipole.

Each time, the selection of the variant and affected node (or nodes) are
random. The probability distributions are different for nodes and for variants.
For nodes, the location in the tree is taken into account (modification of nodes
from the upper levels results in more global changes) and the quality of the
subtree (less accurate nodes should be modified more frequently).

Direct minimization of the prediction error measured on the learning dataset
usually leads to the over-fitting problem, especially in the case of DTs. In typical
top-down induction, this is partially mitigated by defining a stopping condition
and post-pruning. In the case of an evolutionary approach, the multi-objective
function is required to minimize the prediction error and the tree complexity at
the same time. As, in this paper, only univariate classification trees are consid-
ered, the simple weighted form of the fitness function is used:

Fitness(T ) = Accuracy(T ) − α ∗ (Size(T ) − 1.0), (1)

where Accuracy(T ) represents the classification quality of the tree T estimated
on the learning set, Size(T ) is the number of nodes in T and α is a user-defined
parameter that reflects the relative importance of the complexity term.

The selection mechanism is based on the linear ranking selection [14]. Addi-
tionally, in each iteration one individual with the highest fitness in the current
population is copied to the next one (elitist strategy). The evolution ends when
the fitness of the best individual in the population does not improve during the
fixed number of generations or the maximum number of generations is reached.

3 Repository-Supported GPU-based Approach

The general flowchart of the proposed solution is illustrated in Fig. 1. The follow-
ing operations: initialization of the population as well as selection of the individ-
uals/trees remain unchanged compared to the original GDT system. They are
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Fig. 1. Flowchart of a GPU-based approach supported by the repository of individuals.

run in a sequential manner on a CPU since they are relatively fast. In addition,
the initial population is created only once on a small fraction of the dataset.
The GPU is called after each successful application of the crossover/mutation
operator, when there is a need to evaluate the individuals. It is the most time-
consuming operation because all dataset objects have to be propagated from the
tree root to one of the leaves. Both the dataset size and individual size influence
the computational requirements. This part of the algorithm is isolated and per-
formed in parallel on a GPU. This way, the parallelization does not affect the
behavior of the original EA.

In the initialization phase (see Fig. 1), the whole dataset is sent to the GPU.
This CPU to GPU transfer is done only once and the data is saved in the
allocated space in the global memory. This way, all objects of the dataset are
accessible for all threads at any time. In addition, the repository of the individual
is created. A fixed amount of memory is allocated both on the GPU and CPU.
The size of the repository is set before the evolution. Initially, the repository
is empty. On the GPU, the repository is devoted to store the structure of DTs
(tree nodes, branches, tests, etc.). The part of repository located on the CPU
is responsible for keeping fitness results and dipoles of the trees stored on the
GPU. The splitting of the repository location between CPU and GPU allows us
to avoid unnecessary CPU/GPU memory transfers.

In the evolutionary loop, each time, when the genetic operator is successfully
applied, the GPU is asked to help the CPU. First, the modified individual/tree
is sent to the GPU. Then, the GPU searches in the repository for a similar
individual (see Fig. 1, step I). If such an individual is found, the GPU returns
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Fig. 2. GPU kernels arrangement during the evaluation of individuals.

its identifier in the repository and the level of similarity. This information is
used by the CPU to get previously calculated (individual’s) statistics from its
part of the repository. If the same individual is found, then the CPU has only
to copy previously calculated statistics and dipoles from the repository to the
currently evaluated tree. If a similar individual is found, then information from
the matched tree part is used, while for the remaining part of the tree, the
GPU is called to calculate the missing information. In the current version of the
algorithm, when the trees aren’t the same, two types of similarity are considered.
The first case concerns the situation when the tree root and its left subtree are
the same as in the tree from the repository. The second case is analogical but it
refers to the right subtree of the root.

To find a similar individual, two kernel functions are called (see Fig. 2). The
first kernel (searchpre) is used to compare the evaluated indvidual with all indi-
viduals from the repository. A two-level decomposition is applied. Each GPU
block processes one individual from the repository. Threads inside blocks are
responsible for comparing various nodes inside a tree. On the GPU, trees are
represented as one-dimensional arrays where the position of the left and right
child of the i -th node equals (2 ∗ i + 1) and (2 ∗ i + 2), respectively [8]. Thanks
to this, the comparison of the trees consists in checking corresponding array
elements. Additionally, for two types of similar trees, one-dimensional arrays
(so-called maps) are prepared to know which tree nodes have to be checked.
Finally, this kernel provides the level of similarity for each tree in the repository.

The second kernel (searchpost) goes through the results from the first kernel
and provides the identifiers of similar individuals in the repository and their
level of similarity. If no individual is found, −1 identifier is returned. The second
kernel uses only one block to synchronize the results merging effectively. Each
GPU thread is responsible for a bunch of individuals from the repository.



Accelerating GPU-based Evolutionary Induction of Decision Trees 427

In case of not finding similar individuals in the repository, the GPU is called
to calculate the required information as well as to search dipoles (see Fig. 1, part
II) [8]. Two kernel functions are used (see Fig. 2). The first kernel (fitnesspre)
is called to propagate all objects in the training dataset from the tree root to
appropriate leaves. It uses the data decomposition strategy. At first, the whole
dataset is spread into smaller parts over GPU blocks. Next, in each block, the
assigned objects are further spread over the threads. Each GPU block makes a
copy of the evaluated individual that is loaded into the shared memory. This
way, the threads process the same individual in parallel but handle different
chunks of the dataset. At the end of the kernel, in each tree leaf, the number of
objects of each class that reach that particular leaf is stored.

The second kernel function (fitnesspost) merges information from multiple
copies of the individual allocated in each GPU block. This operation sums up
the counters from copies of the individual, and the total number of objects of
each class in each tree leaf is obtained. Finally, reclassification errors in each
leaf are calculated. Then, all gathered information is propagated from the leaves
towards the root. The obtained tree statistics (like coverage, errors) as well as
dipoles are sent back to the CPU in order to finish the individual evaluation.

Each time when the GPU calculates new fitness results, the repository is
updated. On the CPU, the obtained tree statistics and the dipoles are added
to the repository. As regards the GPU, the corresponding tree structures are
stored there. In the current implementation, when a new tree is added to the
repository, it replaces the oldest one if the repository is full.

4 Experimental Validation

Experimental validation was performed on an artificially generated dataset called
chess3x3. This dataset represents a classification problem with two classes, two
real-values attributes and objects arranged on a 3×3 chessboard [10]. We used
the synthetic dataset to scale it freely, unlike real-life datasets. All presented
results correspond to averages of 5–10 runs and were obtained with a default set
of parameters from the original GDT system. As we are focused in this paper
only on size and time performance, results for the classification accuracy are not
included. However, for the tested dataset variants, the GDT system managed to
induce trees with optimal structures and accuracy over 99%.

Experiments were performed on a server equipped with 2 eight-core proces-
sors Intel Xeon E5-2620 v4 (20 MB Cache, 2.10 GHz), 256 GB RAM and running
64-bit Ubuntu Linux 16.04.02 LTS. We tested NVIDIA Tesla P100 GPU card
(3 584 CUDA cores and 12 GB of memory). The original GDT system was imple-
mented in C++ and compiled with the use of gcc version 5.4.2. The GPU-based
parallelization was implemented in CUDA-C [17] and compiled by nvcc CUDA
8.0 [1] (single-precision arithmetic was applied).
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Fig. 3. Performance of the accelerated approach: (a) influence of the repository size
(from 128 to 4096 trees) on the reduction of induction time, (b) detailed time-sharing
information (mean time as a percentage) for repository size of 512 individuals.

4.1 Results

Figure 3(a) shows how much the reusing mechanism accelerates the evolution-
ary induction. The influence of both the dataset size and the repository size is
presented. It is clearly visible that the gain in time is more prominent when
the dataset size increases. For more than 10 millions of objects, the repository-
supported version is about 30% faster than the original GPU-acceleration. An
optimal number of trees stored in the repository grows when larger data is pro-
cessed (for 100 000 objects 128 trees, for 1 000 000 objects 512 trees, etc.)

For smaller datasets (e.g., 100 000 objects), the induction time is even
increased if too many individuals are held in the repository. When the num-
ber of trees exceeds 256, the loss in time is observed. It is caused by a repos-
itory overhead, which is illustrated in Fig. 3(b). Searching in the repository is
mainly blamed for time efficiency drop (REPOsearch is the time that the algo-
rithm spent on searching in the repository). The time spent on other repository
operations, like inserting new individuals (REPOinsert) and reusing stored data
(REPOapply), is negligible and does not depend on the repository size. For the
smallest dataset, the repository search overhead is not compensated by the time
profit resulting from the reusage. When the number of objects increases, then the
evaluation of individuals is more time demanding and the repository overhead
becomes negligible.

In Table 1, we present mean execution times of all tested implementations.
For the GPU-based version with the reusing mechanism, the optimal repository
size is considered. The results show that the gain in time is more important
when large-scale data is processed. For 1 billion of objects, the proposed solution
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Table 1. Mean execution times of the repository-supported (GPU with REPO), GPU,
OpenMP and sequential versions of the algorithm (in seconds, for larger datasets also
time in hours is included).

Dataset size GPU with REPO GPU OpenMP Sequential

100 000 21.1 21.8 100.2 685

1 000 000 55.3 62.7 3 605.7 23 536

10 000 000 449.9 666.7 47 600.4 324 000

100 000 000 5 428.4 (1.5 h) 7 471.3 (2 h) weeks months

1 000 000 000 59 404.2 (16.5 h) 84 245.2 (23.5 h) months over a year

Fig. 4. Searching success ratio for different repository size (from 128 to 4096 individ-
uals): (a) identical tree, (b) similar trees (root and its left or right child).

decreases the induction time by ≈7 h (it is 40% faster). It was estimated that
the sequential GDT system would need over a year to calculate such a dataset
and the OpenMP parallelization [5] would decrease this time to a few months.

We have also examined the searching success ratio (how frequently the search
in the repository ends with a success). Figure 4(a) shows that an identical tree
is found in a few percent of cases (from 2% to 6%). Moreover, we observe that
this ratio grows with the larger repository. However, we should remind that
the repository size influences the search overhead which in the case of smaller
datasets could be significant (as it is shown in Fig. 3). As regards partial sim-
ilarity, the search ends with success much more often (in about 50% of trials)
and it is not dependent on the repository size. The results suggest that similar
trees contribute more to obtain an acceleration.
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5 Conclusion

In this paper, we extend the GPU-based approach for evolutionary induction of
decision trees. The concept of fitness evaluation reusage is proposed. A so-called
repository of individuals is used to store previously considered trees. When a new
individual is evaluated, first, a similar tree to reuse is searched in the repository.
If it is found, the results are read from the repository. Otherwise, the GPU has
to perform required calculations. The results show that the proposed strategy is
able to speed up the induction even further, especially on large-scale data.

This research is a first step in building a so-called ‘multi-tree’ strategy. It
assumes that similar individuals are corepresented by partially sharing frag-
ments/structures in memory. Such a strategy may allow us to observe the evo-
lution dynamics in detail, e.g., to follow diversity at each level of a decision tree.
At the same time, it can also speed up further the evolutionary induction of
decision trees. Other future works include the concept of searching even deeper
resemblance in the repository as well as a multi-GPU approach.
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