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Abstract. The enormous amount of omics data generated from high-
throughput technologies has brought an increased need for computa-
tional tools in biological analyses. Among the algorithms particularly
valuable are those that enhance understanding of human health and
genetic diseases. Relative eXpression Analysis (RXA) is a powerful col-
lection of computational methods for analyzing genomic data. It finds
relationships in a small group of genes by focusing on the relative ordering
of their expression values. In this paper, we propose a Relative eXpression
Classification Tree (RXCT) which extends major variants of RXA solu-
tions by finding additional hierarchical connections between sub-groups
of genes. In order to meet the enormous computational demands we
designed and implemented a graphic processing unit (GPU)-based par-
allelization. The GPU is used to perform a parallel search of the gene
groups in each internal node of the decision tree in order to find locally
optimal splits. Experiments carried out on 8 cancer-related gene expres-
sion datasets show that the proposed approach allows exploring much
larger solution space and finding more accurate interactions between the
genes. Importantly, patterns in predictive structures are kept compre-
hensible and may have direct applicability.

Keywords: Relative Expression Analysis (RXA) · Decision trees ·
GPU · CUDA

1 Introduction

Rapid growth and the popularity of high-throughput technologies cause a mas-
sive amount of gene expression datasets to become publicly accessible [19]. In the
literature, we may find a good number of supervised machine learning approaches
for genomic classification. Among the most popular ones, we could mention the
support vector machines, neural networks or random forests. Most of currently
applied methods provide ‘black box’ classification that usually involves many
genes combined in a highly complex fashion and achieves high predictive perfor-
mance. However, there is a strong need for ‘white box’, comprehensive decision
models which may actually help in understanding and identifying casual rela-
tionships between specific genes [2,5]. The popular ones, like the decision trees
c© Springer Nature Switzerland AG 2020
R. Wyrzykowski et al. (Eds.): PPAM 2019, LNCS 12043, pp. 359–369, 2020.
https://doi.org/10.1007/978-3-030-43229-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43229-4_31&domain=pdf
http://orcid.org/0000-0002-3967-1819
http://orcid.org/0000-0001-6469-1769
http://orcid.org/0000-0001-9175-2678
https://doi.org/10.1007/978-3-030-43229-4_31


360 M. Czajkowski et al.

(DTs) which have a long history in predictive modeling [10], result in insuffi-
cient accuracy [2] when applied to gene expression data. One of the problem
specific alternatives is the Relative Expression Analysis (RXA) which is a pow-
erful collection of easily interpretable computational methods. It was designed
to analyze genomic data and plays an important role in biomarker discovery
and gene expression data classification. It focuses on finding interactions among
a small collections of genes and studies the relative ordering of their expression
rather than their raw values.

In this paper, we want to merge the strength of RXA with DTs. We propose
a new hybrid solution called Relative eXpression Classification Tree (RXCT)
that induces DT with the splitting rules built by the RXA methodology. In
order to overcome the enormous computational complexity we designed and
implemented a graphic processing unit (GPU)-based parallelization of the RXA
search. Finally, we added a few changes to the RXA algorithm in order to improve
speed and to enable potential multi-class prediction.

This paper is organized as follows. Section 2 provides our motivation and a
brief background on RXA, DTs and GPGPU parallelization. Section 3 describes
in details our hybrid RXA solution and its GPU-based implementation. Next, an
experimental validation is performed on real-life datasets and in the last section,
the paper is concluded and possible future works are outlined.

2 Background

Gene expression data is very challenging for computational tools and mathemat-
ical modelling. Traditional solutions often fail due to the high ratio of features
to observations as well as genes redundancy. Therefore, there is a need for new
methods to be proposed to extract significant and meaningful rules from the
genomic data.

Fig. 1. The general taxonomy of the family of RXA
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2.1 Algorithms for Relative Expression Analysis

Among many recent algorithms designed for the gene expression data classifica-
tion, RXA methods are gaining popularity. The RXA taxonomy that includes
the main development paths is illustrated in Fig. 1. A Top-Scoring Pair (TSP) is
the first and the most popular RXA solution proposed by Donald Geman [8]. It
uses a pairwise comparison of gene expression values and searches for a pair of
genes with the highest rank. The k-TSP algorithm [18] is one of the first exten-
sions of the TSP solution. It focuses on increasing the number of pairs in the
prediction model and applies no more than k disjoint gene pairs with the highest
score, where the parameter k is determined by the internal cross-validation. This
method was later combined with a decision tree in algorithm called TSPDT [4].
In this system each non-terminal node of the tree divides instances according to
a splitting rule that is based on TSP or k-TSP criteria.

Different approaches for the TSP extension focus on the relationships between
more than two genes. Top Scoring Triplet (TST) [11] and Top Scoring N (TSN)
[14] analyze ordering relationships between several genes, however, the general
concept of TSP is retained. One of the first heuristic method applied to RXA
was the evolutionary algorithm called EvoTSP [5] where the authors proposed
an evolutionary search for the k-TSP and TSN-like rules. Performed experiments
showed that evolutionary search is a good alternative to the traditional RXA
algorithms. Finally, there are many variations of the TSP-family solutions that
propose new ways of ranking the gene pairs.

2.2 Decision Trees

Decision trees [10] are one of the main techniques for discriminant analysis in
knowledge discovery. The success of the tree-based approach can be explained
by its ease of use, speed of classification and effectiveness. In addition, the hier-
archical structure of the tree, where appropriate tests are applied successively
from one node to the next, closely resembles the human way of making decisions.

However, there are not so many new solutions in the literature that focus on
the classification of gene expression data with comprehensive DT models. Nowa-
days, much more interest is given in trees as sub-learners of an ensemble learning
approach, such as Random Forests [3]. These solutions alleviate the problem of
low accuracy by averaging or adaptive merging of multiple trees. However, when
modeling is aimed at understanding basic processes, such methods are not so
useful because they generate more complex and less understandable models.

2.3 GPGPU Parallelization

A general-purpose computation on GPUs (GPGPU) stands for the use of graph-
ics hardware for generic problems. In the literature, we can find a few systems
where GPU-based parallelization of the greedy induction of DTs was examined.
One of the propositions was a CUDT [12] that parallelized the top-down induc-
tion process. In each internal node, in order to find the best locally optimal splits,
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the attributes are processed in parallel. With this approach, the authors man-
aged to reduce the induction time of a typical decision tree from 5 to 55 times
when compared with the traditional CPU version. The GPU was also introduced
in GDT system which parallelizes evolutionary induction of DTs [9].

In case of RXA there exists also research considering GPU parallelization. In
[13] authors managed to speed up calculations of TSP and TST by two orders
of magnitude. The tests for higher number of related genes were also performed
[14], but only when the total number of attributes was heavily reduced by the
feature selection.

2.4 Motivation and Contribution

In this paper we propose a new approach that combines the strength of DTs
with RXA. We are motivated by the fact that single DT represents a white-
box approach, and improvements to such models have considerable potential for
scientific modeling of the underlying processes in a genomic research.

Proposed contribution is inspired with the existing system called TSPDT [4]
which also uses RXA concept in DT nodes. The main drawback of TSPDT as
well as all traditional RXA algorithms is the enormous computational complexity
that equals O(T ∗ k ∗ NZ), where T is the size of DT, k is the number of top-
scoring groups, N is the number of analyzed genes and Z is the size of a group
of genes which ordering relationships are searched. Sequential calculation of all
possible gene pairs or gene groups strongly limits the number of genes and inter-
relations that can be analyzed by the algorithm. This is the reason why the
TSPDT focuses only on TSP and k-TSP variants and the algorithm need to be
preceded by the feature selection step.

There are several major differences between the TSPDT and proposed RXCT
solutions in terms of both performance and functionality:

– with the GPU parallelization the RXCT is capable of inducing the RXA-based
decision tree much faster, even on entire datasets (without feature selection
step);

– RXCT extends the inter-gene relations, allows testing higher number of
related genes and has additional optimizations considering strict order rela-
tions;

– RXCT in contrast to TPSDT can be applied to multi-class datasets due to
the different splitting rule.

3 Relative eXpression Classification Tree

The proposed solution’s overall structure is based on a typical top-down induced
[16] binary classification tree. The greedy search starts with the root node, where
the locally optimal split (test) applies RXA. Then the training instances are
redirected to the newly created nodes and this process is repeated for each node
until the stop condition is met. Currently, we do not apply any form of pruning
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due to the small sample sizes, however it should be considered in the future to
improve the generalizing power of the predictive model.

The general flowchart of our GPU-accelerated RXCT is illustrated in Fig. 2.
It can be seen that the DT induction is run in a sequential manner on a CPU,
and the most time-consuming operation (split search) is performed in parallel on
a GPU. This way, the parallelization does not affect the behavior of the original
algorithm.

Fig. 2. General flowchart of a GPU-accelerated RXCT

3.1 RXCT Split Search

Each internal node contains information about a relation of two or three genes
that is later used to constitute the split. The basic idea to analyze relations
within a single instance is similar to TSP and TST solutions, however, there are
some differences in strict ordering as well as in ranking of gene collections.

Let xi, xj and xk be the expression values of three genes i, j, k from available
set of N genes. However, in contrast to existing solutions, we allow triplet reduc-
tion to a pair if j equals k. RXA can be directly applied to binary classification
problems as it scores relations using probabilities of assigning instances to one
of two classes. To allow application RXCT to analyze multi-class datasets, we
have chosen to use Gini index [1] which is well known splitting criterion for DT.
It is also slightly computationally faster than the gain ratio as there are no LOG
functions.
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The Gini impurity is calculated for all pairs or triplets defined by the relation:
xi > xj ≥ xk where i �= j. The non-strict relation between the second and third
gene allows us to test both TSP (if j = k) and TST (j �= k) variants. However, in
contrast to RXA-based solutions we do not check all possible orderings but limit
them to those that meet the assumption i > j ≥ k. This limitation does not
affect the results (if one of the relation is opposite then the resulting branches
are swapped) but reduces the calculations twice in case of TSP and six times in
case of TST. The triplet with the highest Gini impurity becomes the split and
in case of a draw, a secondary ranking that bases on real-value genes expression
differences is used [18].

3.2 GPU-Based Approach

The RXA methods like TSP and TST exhibit characteristics that make them
ideal for a GPU implementation as there is no data dependence between indi-
vidual scores. As it is illustrated in Fig. 2, the dataset is first copied from the
CPU main memory to the GPU device memory so each thread block can access
it. Typical sizes of gene expression datasets are not large and range from a few
to several hundred megabytes, thus there is no problem to fit the entire set into
a single GPU memory.

In each node, N3 of possible relations xi > xj ≥ xk need to be processed and
scored. Each thread on the device is assigned an equal amount of relations (called
offset) to compute (see Fig. 2). This way each thread ‘knows’ which relations
of genes it should analyze and where it should store the result. However, as
it was mentioned in previous section, not all relations need to be calculated
(assumption i > j ≥ k). In addition, number of instances for which the Gini
impurity is calculated varies in each tree node - from full set of samples in a root
to a few instances in the lower parts of the tree.

Each launched kernel requires not only the relations that will be processed
but also: an information about the instances that reach the internal node which
runs the kernel; and an empty vector for the results. Within each thread there
is no further parallelization: each thread simply loops over the instances that
reach the node and calculates the scores to the assigned relations. After all
thread blocks have finished, the top results from each threads are copied from
the GPU device memory back to the CPU main memory where the top split is
selected.

4 Experimental Validation

In this section, we present experimental analysis of RXCT predictive perfor-
mance and confront its results with popular RXA extensions. In addition, we
show the speedup achieved with proposed GPU parallelization.
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4.1 Datasets and Setup

To make a proper comparison with the RXA algorithms, we use the same 8
cancer-related benchmark datasets (see Table 1) that are tested with the EvoTSP
solution [5]. Datasets are deposited in NCBI’s Gene Expression Omnibus and
summarized in Table 1. A typical 10-fold cross-validation is applied and depend-
ing on the system, different tools are used:

– evaluation of TSP, TST, and k-TSP was performed with the AUERA software
[7], which is an open-source system for identification of relative expression
molecular signatures;

– EvoTSP results were taken from the publication [5];
– original TSPDT and RXCT implementation are used.

Due to the performance reasons concerning other approaches, the Relief-F fea-
ture selection was applied and the number of selected genes was arbitrarily lim-
ited to the top 1000. In the experiments, we provide results for the proposed
RXCT solution as well as its simplified variant called RXCTTSP which uses
only TSP-like splits.

Table 1. Details of gene expression datasets: abbreviation with name, number of genes
and number of instances.

Datasets Genes Instances Datasets Genes Instances

(a) GDS2771 22215 192 (e) GSE10072 22284 107

(b) GSE17920 54676 130 (f) GSE19804 54613 120

(c) GSE25837 18631 93 (g) GSE27272 24526 183

(d) GSE3365 22284 127 (h) GSE6613 22284 105

Experiments were performed on a workstation equipped with Intel Xeon
CPU E5-2620 v3 (15 MB Cache, 2.40 GHz), 96 GB RAM and NVIDIA GeForce
GTX Titan X GPU card (12 GB memory, 3 072 CUDA cores). We used a 64-bit
Ubuntu Linux 16.04.6 LTS as an operating system. The sequential algorithm
was implemented in C++ and compiled with the use of gcc version 5.4.0. The
GPU-based parallelization part was implemented in CUDA-C [17] and compiled
by nvcc CUDA 8.0 [15] (single-precision arithmetic was applied).

4.2 Accuracy Comparison to Popular RXA Algorithms

Table 2 summarizes classification performance for the proposed solution and it’s
competitors. From the results we can see that the proposed RXCT solution
managed to outperform in average all popular RXA classifiers. Although there
are no statistical differences between TSPDT and RXCT in terms of accuracy,
the size of the trees generated by RXCT is significantly smaller (Friedman test
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and the corresponding Dunn’s multiple comparison test are applied, p-value =
0.05 [6]).

There are two factors that may explain such good results achieved by the
RXCT classifier. First of all, we use TST-like variant in each node instead of TSP
split so more advanced relations are searched. Next, the additional experiments
(not shown) revealed that in the case of DT using the original TSP rank to
split the data, it returns worse results than when using one of the standard DT
splitting criteria like Gini index or gain ratio. It also explains why the RXCTTSP

using a single TSP in each node can compete with TSPDT which uses more
complex split (k - top pairs).

Table 2. Comparison of RXCT with top-scoring algorithms, including accuracy and
the size of the classifier’s model. The best accuracy for each dataset is bolded.

Dataset TSP TST k-TSP EvoTSP TSPDT RXCTTSP RXCT

acc. acc. acc. size1 acc. size2 acc. size3 acc. size4 acc. size5

(a) 57.2 61.9 62.9 10 65.6 4.0 60.1 16.4 68.2 15.1 67.2 10.5

(b) 88.7 89.4 90.1 6 96.5 2.1 98.2 2.0 95.1 2.0 100.0 2.0

(c) 64.9 63.7 67.2 10 78.1 2.8 72.3 6.8 74.6 6.8 77.7 5.0

(d) 93.5 92.8 94.1 10 96.2 2.1 88.3 3.0 90.0 2.8 91.6 2.0

(e) 56.0 60.5 58.4 14 66.9 3.1 68.1 5.7 68.6 6.0 73.2 4.3

(f) 47.3 50.1 56.2 18 66.2 2.7 67.2 11.9 60.6 12.6 60.0 9.2

(g) 81.9 84.2 87.2 14 86.1 4.1 88.6 4.3 85.0 4.1 89.7 3.3

(h) 49.5 51.7 55.8 10 53.6 6.1 59.6 8.0 54.3 7.0 70.4 5.4

Average 67.4 69.3 71.5 11.5 76.2 2.7 75.3 7.2 74.6 6.9 78.7 5.1
1 Avg. number of k-TSP pairs (k≤18);
2 Avg. number of unique genes;
3 Avg. number of tree nodes, in each node no more than k (k ≤5) TSP;
4 Avg. number of tree nodes, each node with single TSP;
5 Avg. number of tree nodes, each node with single TST.

Fig. 3. Effect of block’s and thread’s number on the algorithm speedup.
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4.3 Speed Improvement with GPGPU Approach

Even with the feature selection step, the number of possible relations for which
the GPU needs to calculate score is very high. For example, for 1000 genes there
is 109 possible split expression rules in each tree node whereas if we take the
full dataset, e.g. GSE17920, this number drastically increases to 1.63 * 1014. The
high number of possible kernel tasks requires finding optimal number of threads
and blocks which will perform the calculations. Figure 3 illustrates how amount
of threads impacts on the GPU-accelerated RXCT speedup in comparison to its
sequential version averaged on all datasets. We see that by increasing at some
point the number of blocks the speedup rises. This suggests that processing too
many possible relations by each thread (high load) slows down the parallelization.
Decreasing the offset value improves load balancing and thus the overal RXCT
speedup.

In this section we also present the times achieved by popular RXA solutions.
We perform direct time comparison between the TSPDT solution and two vari-
ants of the RXCT algorithm: original RXCT and RXCTTSP version which is
at some point similar to TSPDT. Table 3 shows the times and speedups of the
sequential and parallel versions or RXCT for all the datasets. Alike in Sect. 4.2
the number of attributes in the datasets was limited to 1000. As expected, the
algorithms which compare only two features perform much faster than the ones
which analyze triplets. At the same time, the solutions that use hierarchical
structures take much more time as they run multiple searches of top groups in
each non-terminal node.

Table 3. Induction times of popular RXA solutions (in seconds). Impact of the GPGPU
approach on the RXCT and RXCTTSP algorithm is also included.

Dataset TSP TST TSPDT seqRXCTTSP RXCTTSP seqRXCT RXCT

Time Time Time Time Time Speedup Time Time Speedup

(a) 3.01 999 325 15.5 0.067 232 4071 24.1 169

(b) 1.92 672 32.3 7.30 0.030 247 1842 11.9 155

(c) 1.49 1005 113 5.13 0.021 241 1276 8.04 158

(d) 1.95 590 76.8 4.87 0.017 314 1314 8.33 158

(e) 1.84 676 127 1.83 0.013 253 519 3.15 165

(f) 2.07 653 292 16.9 0.068 250 3444 23.3 148

(g) 2.99 511 106 3.33 0.024 276 857 5.50 156

(h) 1.78 592 151 6.56 0.031 250 1575 9.76 161

Average 2.13 712 152 7.68 0.031 250 1862 21.9 159

We have also performed experiments with datasets containing all attributes.
Total time required to process all 8 datasets takes over 2 weeks by TSPDT,
16 h by seqRXCTTSP and only 3 min by RXCTTSP (∼ x300 faster than
seqRXCTTSP and ∼ x7000 faster than TSPDT).

However, titled RXCT solution is much more computationally demanding.
The total time required by RXCT equals approximately 20 days which is similar
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to the time need by the TSPDT solution. For the seqRXCT version it would
take over a decade to induce the same tree.

5 Conclusion

In this paper, we introduce a hybrid approach to analyze gene expression data
which combines the problem-specific methodology with the popular white-box
classifier. The Relative eXpression Classification Tree extends major variants of
RXA solutions and is capable of finding interesting hierarchical patterns in sub-
groups of genes. In addition, thanks to the GPU-parallelization, we managed to
induce the tree in a reasonable time.

We see many promising directions for future research. First of all, there is still
a lot of ways to improve the GPU parallelization of RXCT, e.g. load-balancing
of tasks based on the number of instances in each node, simultaneous analy-
sis of two branches, better GPU hierarchical memory exploitation. Then, other
variants of RXA can be used in each split like k-TSP, k-TST or even both.
Next, some form of tree post-pruning could be applied, not only to limit the
tree size but also to decrease the number of genes used in the splits in order to
reduce overfitting and promote more accurate decisions. Finally, we are currently
working with biologists and bioinformaticians to better understand the decision
rules generated by RXCT and preparing the algorithm to work with protein and
metabolic expression databases.
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