
Tree Based Advanced Relative Expression
Analysis

Marcin Czajkowski(B), Krzysztof Jurczuk, and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351 Bialystok, Poland

{m.czajkowski,k.jurczuk,m.kretowski}@pb.edu.pl

Abstract. This paper presents a new concept for biomarker discov-
ery and gene expression data classification that rises from the Rela-
tive Expression Analysis (RXA). The basic idea of RXA is to focus
on simple ordering relationships between the expression of small sets
of genes rather than their raw values. We propose a paradigm shift as we
extend RXA concept to tree-based Advanced Relative Expression Analy-
sis (ARXA). The main contribution is a decision tree with splitting nodes
that consider relative fraction comparisons between multiple gene pairs.
In addition, to face the enormous computational complexity of RXA, the
most time-consuming part which is scoring all possible gene pairs in each
splitting node is parallelized using GPU. This way the algorithm allows
searching for more tailored interactions between sub-groups of genes in
a reasonable time. Experiments carried out on 8 cancer-related datasets
show not only significant improvement in accuracy and speed of our app-
roach in comparison to various RXA solutions but also new interesting
patterns between subgroups of genes.

Keywords: Relative Expression Analysis · Decision trees · Gene
expression data

1 Introduction

High-throughput technologies are generating large volumes of omics data at
an unprecedented rate [11]. Traditional machine learning algorithms have been
quite successful in automatically identifying complex patterns. Unfortunately,
the overwhelming majority of systems focus on complex decision rules that are
obstacles to mature applications [2]. Currently developed classification methods
to biological data are usually designed for other purposes, such as improving
statistical learning or applications to vision and speech, with little emphasis on
transparency. The complexity of the decision rules that emerge from standard
machine learning impedes biological understanding.

Comprehensive analysis poses new computational challenges and specialized
computational approaches are required to effectively and efficiently carry out
the predictions using biomedical data. It can be observed that there is a strong
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12139, pp. 496–510, 2020.
https://doi.org/10.1007/978-3-030-50420-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50420-5_37&domain=pdf
https://doi.org/10.1007/978-3-030-50420-5_37

Tree Based Advanced Relative Expression Analysis 497

need for such ‘white box’ models which may actually help in understanding
and identifying relationships between specific features and improve biomarker
discovery [22]. One of the solutions is Relative Expression Analysis (RXA) which
is a powerful collection of easily interpretable computational methods for gene
expression data classification. It focuses on finding interactions among a small
collection of genes by studying relative ordering of their expressions rather than
their raw values.

The most significant novelty in the proposed paper is the new, much more
general concept of gene-gene interaction within RXA called Advanced Rela-
tive Expression Analysis (ARXA). By introducing relative fraction comparison
between multiple gene pairs within a single individual we can detect not only the
ordering shifts between the genes but also the percent changes in their relations.
In addition, we have applied this strategy to the splitting nodes of the Decision
Trees (DTs) in order to detect hierarchical relations as well. The traditional DTs
have a long history in predictive modeling [17] but result in insufficient accu-
racy when applied to gene expression data. By combining and extending these
two ‘white box’ algorithms we managed to significantly improve the classifica-
tion accuracy on several publicly available gene expression datasets. Finally, to
face up the enormous computational complexity which rises from an exhaustive
analysis of all possible pairs of genes, we designed and implemented a graphic
processing unit (GPU)-based parallelization.

The next section provides our motivations and a brief background on RXA,
DTs and GPGPU parallelization. Section 3 describes in detail our concept of
tree-based ARXA and its GPU-based implementation. In Sect. 4, experimen-
tal validation is performed and in the last section, the paper is concluded and
possible future works are outlined.

2 Background

While great progress has been achieved in what entails biodata analysis, most of
the research effort tends to focus almost exclusively on the prediction accuracy of
core data mining tasks (e.g., classification and regression), and far less effort has
gone into the crucial task of knowledge discovery itself. Specifically, the rules
generated by nearly all standard, off-the-shelf techniques applied to genomics
data [1], such as neural networks, random forests, SVMs, and linear discriminant
analysis usually involve nonlinear functions of hundreds or thousands of genes,
many parameters, and are therefore too complex to characterize mechanistically.
Currently, deep learning approaches have been getting attention [23] as they can
better recognize complex features through representation learning with multiple
layers, and can facilitate the integrative analysis by effectively addressing the
challenges discussed above. However, we know very little about how such results
are derived internally.

In contrast to data mining systems, statistical methods for analyzing high-
dimensional biomolecular data generated with high-throughput technologies per-
meate the literature in computational biology. Those analyses have uncovered

498 M. Czajkowski et al.

a great deal of information about biological processes [1], such as important
mutations and lists of “marker genes” associated with common diseases and key
interactions in transcriptional regulation. However, the analysis is often limited
to a relatively small number of features thus a small set of informative variables
needs to be identified out of a large number (or dimension) of candidates.

2.1 Relative Expression Analysis

The process of biomarker discovery and characterization provides opportuni-
ties for more sophisticated solutions that integrate statistical, data mining and
expert knowledge-based approaches. One of the ideas for the gene expression
data is the concept of Relative Expression Analysis which focuses on testing rel-
ative expression ordering among a small number of transcripts. In the pioneering
research from 2004, a Top Scoring Pair (TSP) method is proposed [10] which is
a straightforward prediction rule based on the RXA concept that utilizes build-
ing blocks of rank-altered gene pairs in case and control comparison. Such pairs
of genes can be viewed as “biological switches” which can be directly related to
regulatory “motifs” or other properties of transcriptional networks. The discrim-
inating power of each pair of genes i, j was measured by the absolute difference
between the probabilities Pij of the event that gene i is expressed more than
gene j in the two classes.

Let xi and xj be the expression values of two different genes from available set
of genes and there are only two classes: normal and disease. At first, algorithm
calculates the probability of the relation xi < xj between those two genes in
the objects from the same class: Pij(normal) = Prob(xi < xj |Y = normal)
and Pij(disease) = Prob(xi < xj |Y = disease), where Y denotes the class of
the objects. Next, the score for this pair of genes (xi, xj) is calculated: Δij =
|Pij(normal) − Pij(disease)|. This procedure is repeated for all distinct pairs
of genes and the pair with the highest score becomes titled top scoring pair.
In the case of a draw, a secondary ranking that bases on raw genes expression
differences in each class is used [24].

The k-TSP algorithm [24] is one of the first extensions of the TSP solution.
It focuses on increasing the number of pairs in the prediction model and applies
no more than k top scoring disjoint gene pairs with the highest score, where
the parameter k is determined by the internal cross-validation. This method was
later combined with a top-down induced decision tree in an algorithm called
TSPDT [5]. In this hybrid solution, each non-terminal node of the tree divides
instances according to a splitting rule that is based on TSP or k-TSP accuracy.

Different approaches for the TSP extension focus on the relationships between
more than two genes. Algorithms Top Scoring Triplet (TST) [19] and Top Scoring
N (TSN) [21] analyze all possible ordering relationships between the genes, how-
ever, the general concept of TSP is retained. One of the first heuristic approaches
that applied the RXA concept was the evolutionary algorithm called EvoTSP
[6] where the authors proposed an evolutionary search for the TSP-like rules.
This approach, later extended with additional features ranking in REHA [7]
showed that evolutionary search is a good alternative to the traditional RXA

Tree Based Advanced Relative Expression Analysis 499

algorithms. Finally, there are many variations of the TSP-family solutions that
involve changes in ranking calculations, we can distinguish AUCTSP classifier
that uses the ROC curve [15] or VH-k-TSP [12] that focuses on vertical and
horizontal genes relations. What’s more, the strength and simplicity of RXA
has been recognized outside genomics data and is being successfully used in the
proteomic and metabolomic analysis.

2.2 Decision Trees

The popularity of Decision trees (DTs) [17] can be explained by its ease of use,
speed of classification and effectiveness. In addition, the hierarchical structure of
the tree, where appropriate tests are applied successively from one node to the
next, closely resembles the human way of making decisions. DT has a knowledge
representation structure made up of nodes and branches, where: each internal
node is associated with a test on one or more attributes; each branch represents
the test result, and each leaf (terminal node) is designed by a class label. Induc-
tion of optimal DT is a known NP-complete problem [13]. As a consequence,
practical DT learning algorithms must be heuristically enhanced.

DT represents a white-box approach and has considerable potential for bio-
data research and scientific modeling of the underlying processes. Unfortunately,
there are not so many new solutions in the literature that focus on the classifica-
tion of genomic data with comprehensive DT models. Existing attempts showed
that decision tree algorithms often induce classifiers with the inferior predictive
performance [8] and one of the alternatives is combining DTs with evolution-
ary approaches [18]. However, nowadays, much more interest is given in trees as
sub-learners of an ensemble learning approach, such as Random Forests. These
solutions alleviate the problem of low accuracy by averaging or adaptive merg-
ing of multiple trees. However, when modeling is aimed at understanding basic
processes, such methods are not so useful because they generate more complex
and less understandable models.

2.3 GPGPU Parallelization

Recent research on the parallelization of various evolutionary computation meth-
ods has seemed to focus on GPUs as the implementation platform. The popular-
ity of GPUs results from their general availability, relatively low cost, and high
computational power. Parallel evaluation of instances is considered much more
scalable with respect to the size of the dataset than a population approach. It
focuses on gradually distributing the entire dataset among the local memories
of all processors.

In the literature, we can find a few systems where GPU-based parallelization
of the induction of DTs was examined. One of the propositions was CUDT [20]
that parallelized the top-down induction process. In each internal node, in order
to find the best locally optimal splits, the attributes are processed in parallel.
With this approach, the authors managed to reduce the induction time of a
typical decision tree from 5 to 55 times when compared with the traditional

500 M. Czajkowski et al.

CPU version. The GPGPU parallelization was also introduced to evolutionary
induced DTs [14]. In the case of RXA there exists also research considering GPU
parallelization. In [21] authors managed to speed up calculations of basic TSP
and TST solutions by two orders of magnitude.

2.4 Motivation and Contribution

Most recently proposed data mining methods for genomic data generate complex
rules that constrain the process of uncovering new biological understanding that,
after all, is the ultimate goal of data-driven biology. However, it is not enough to
simply produce good outcomes but to provide logical reasoning just as clinicians
do for medical treatments. In addition, whereas the need for statistical methods
in biomedicine continues to grow, the effects on the clinical practice of existing
classifiers based on genomic data are widely acknowledged to remain limited. One
of the barriers is the study-to-study diversity in reported prediction accuracies,
problems with data integration and the unfavorable ratio of the sample size to
the number of potential biomarkers. The main TSP advances for gene expression
data analysis are:

– the method is non-parametric since the method is constructed based on the
relative ranking of gene pairs;

– the method is based on one or a few gene pairs. The biological interpretation
of the model and the translational application are more straightforward;

– researchers have repeatedly found that the family of TSP algorithms provides
good prediction performance in many transcriptomic data [1].

The main drawback of TSP-family algorithms is that they are focused only
on gene expression data and can only be used locally and on a small scale.
There are two reasons why: (i) focusing on simple “biological switches” may
not work where more advanced relations occur; (ii) exhaustive search performed
by TSP-solutions has enormous computational complexity which strongly limits
the number of features and inter-relations that can be analyzed [16]. In our
previous research, we managed to partially address both issues separately by
using decision trees with TSP splits [5] and/or evolutionary algorithms [6,8].

Nonetheless, the true core of the problem (i) still remains as deliberately
replacing the raw data values with the ordering relationships between the fea-
tures obviously causes loss of potentially important information. Let us hypo-
thetically assume that for some tested sample two genes X1 and X2 can discrim-
inate normal class from cancer one. Figure 1 shows three simple scenarios (a),
(b), (c) together with the outcome of RXA. The example (a) shows the ultimate
goal of RXA as it illustrates the perfect “top scoring pair”. We can observe that
the ordering relations between genes X1 and X2 is opposite in different classes
among all the instances. Unfortunately, RXA outcome for scenario (a) and sce-
nario (b) would be the same as in both cases “biological switch” occurs, at least
in theory. However, when we look at the expression image and the chart axis
we see, that in fact, X1 and X2 have low expression values in both classes. Such

Tree Based Advanced Relative Expression Analysis 501

Fig. 1. Comparison of possible relations between two genes X1 and X2 in normal and
cancer samples together with RXA outcome

selected pair is not relevant despite the fact that it will be promoted by RXA.
An even worse scenario is presented in example (c) of Fig. 1 where undoubtedly
relevant pair is not considered by the RXA despite significant variations in the
expression values of genes in normal and cancer classes. As the simple ordering
relationship between X1 and X2 is not changed between both classes, currently
available RXA-family algorithms will never mark these genes as “top scoring
pair”. It might choose them with together other genes, by making multiple top
pairs, but besides potential interpretability problems, lower accuracy issues may
also arise. The issue (i) is also aggravated by the second (ii) problem which is
computational complexity equals O(T ∗ k ∗ M ∗ NZ), where T is the size of DT,
k is the number of top-scoring groups, M is the number of instances, N is the
number of analyzed genes and Z is the size of a group of genes which ordering
relationships are searched. Sequential calculation of all possible gene pairs or
gene groups strongly limits the number of genes and inter-relations that can
be analyzed in a reasonable time and at the same time limits the number of
features having similar expression values and being opposite to each other in
different classes.

In this paper we propose the comparison of percentage changes of gene expres-
sions in pairs among different classes. Within our approach the algorithm can
easily ignore not relevant pairs (scenario (b)), select relevant ones (scenario (a)
and (c)) and work even with smaller number of features. It should be noted that
our new weight approach is even more computationally demanding than a typi-
cal RXA which will be shown in the following section. That is why we designed
the GPU parallelization as an alternative to the above-mentioned evolutionary
approaches to enable much faster RXA calculations.

3 Tree Based Advanced Relative Expression Analysis

The overall structure of the proposed solution is based on a typical top-down
induced [17] binary classification tree. The greedy search starts with the root

502 M. Czajkowski et al.

Fig. 2. General flowchart of a GPU-accelerated ARXA

node, where the locally optimal split (test) applies the new rank concept (denoted
as ARXA). Then the training instances are redirected to the newly created
nodes and this process is repeated for each node until the stop condition is met.
Currently, we do not apply any form of post-pruning due to the small sample
sizes, however, it should be considered in the future to improve the generalizing
power of the predictive model.

The general flowchart of our GPU-accelerated ARXA is illustrated in Fig. 2.
Each internal node contains information about a relation of pairs of genes that
is later used to constitute the split. The basic idea to analyze relations within
a single instance alike in RXA solutions, however, there are fundamental differ-
ences in scoring the collections of genes. It can be seen that the DT induction is
run in a sequential manner on a CPU, and the most time-consuming operation
which is scoring all potential splits is performed in parallel on a GPU. This way,
the parallelization does not affect the behavior of the original algorithm.

Let us consider a gene expression microarray dataset consisting of N genes
and M samples. Let the data be represented as an N × M matrix in which
an expression value of u-th gene from v-th sample is denoted as xuv. Each row
represents observation of a particular gene Xu over M training samples, and
each column Yv represents a sample v described by the N genes. Let’s for the
simplicity of presentation assume that there are only two classes: C1 and C2,
and instances with indexes from 1 to M1 (M1 < M) belong to the first class
(C1) and instances from range (M1 + 1,M〉 to the second class (C2).

At first, the ARXA method focuses on gene pair matching (i, j) (i, j ∈
{1, . . . , N}, i �= j) for which there is the highest averaged over instances proba-
bility p of an event xim

xjm
< xin

xjn
(m ∈ C1 and n ∈ C2). For each pair of genes (i,

j) the probability pij is calculated:

pij =

∑M1
m=1

∑M
n=M1+1 I(xim

xjm
< xin

xjn
)

(|C1| ∗ |C2|)

Tree Based Advanced Relative Expression Analysis 503

where |C1| denotes the number of instances from class C1 and I(xim

xjm
< xin

xjn
) is

the indicator function defined as:

I(
xim

xjm
<

xin

xjn
) =

{
1, if xim

xjm
< xin

xjn

0, if xim

xjm
≥ xin

xjn

.

This computationally expensive calculations performed in each splitting node
with complexity equals O(N2 ∗ M2) are handled by the GPU. Next, the top
ranked pair from each thread is considered in building the splitting node. The
threshold are calculated on the CPU and a single test that constitute splitting
node has a form e.g. xi

xj
< 5. It denotes that the instances can be divided into two

sub-groups (branches or even classes) by simply checking if expression value of
gene xj is greater than 20% of gene xi. Alike in k-TSP [24] we define maximum
number of pairs that can constitute a node (the upper bound denoted as k can
be set up before the classification) but instead of minimizing the prediction error
we apply the gain ratio criterion. The number of pairs that creates the node may
vary due to the internal cross-validation which throws away tests that do not
contribute just as it is in k-TSP. The splitting criterion is guided by a majority
voting mechanism in which all pair components of the split have the same weight.
In the case of a draw, the vote of the primary pair is decisive.

3.1 ARXA Scoring on GPU

We propose two-level scoring due to the performance reasons as the major part
of the scoring procedure is performed on the GPU and next the top gathered
results are processed by the CPU (see Fig. 2). The RXA methods like TSP and
TST exhibit characteristics that make them ideal for a GPU implementation
as there is no data dependence between individual scores. As it is illustrated
in Fig. 2, the dataset is first copied from the CPU main memory to the GPU
device memory so each thread block can access it. It is performed only once
before starting the tree induction as later only the indexes of the instances that
remain in a calculated node are sent. In each node, possible relations Xi/Xj

need to be processed and scored. Each thread on the device is assigned an equal
amount of relations (called offset) to compute (see Fig. 2). This way each thread
‘knows’ which relations of genes it should analyze and where it should store the
result.

In addition, number of instances for which the score is calculated varies in
each tree node - from the full set of samples in a root to a few instances in the
lower parts of the tree. Each thread loops over the instances that reach the node
and calculates the scores to the assigned relations. After all thread blocks have
finished, the results are copied from the GPU device memory back to the CPU
main memory where the top split is established.

3.2 ARXA Scoring on CPU

After letting GPU know which instances residue in a current node and what
offset is assigned to each thread, the CPU calculates the gain ratio for the node.

504 M. Czajkowski et al.

Fig. 3. Candidate thresholds for gene pair xi/xj

It is essential to check if potential splits returned from the GPU improves overall
gain ratio as otherwise the leaf will be created. ARXA scoring on the CPU starts
with sorting the results returned from threads according to their score (calculated
on the GPU). Next, the results are filtered, alike in k-TSP solution, to leave only
the k (default value: k = 9) top-ranked disjoint gene pairs. It should be noted
that the GPU returns only the information about the relations and scores which
is not enough to constitute a split.

Therefore, in the next step a set of tests is determined for further evaluation.
Each test is constituted from a single top pair and has a form: xi

xj
< hi/j ,

where hi/j is the selected threshold. The search for the threshold only considers
the relevant thresholds, called the candidate thresholds, which split instances
from different classes as it is illustrated in Fig. 3. This way the algorithm does
not consider e.g. h1,i/j , h4,i/j and hM−1,i/j as those thresholds are useless for
creating new tests because they split two training instances from the same class.
The gain ratio criterion is used to determine the best possible threshold hi/j ,
and the midpoint of the interval is applied as the value of this threshold. As an
alternative to midpoint, we also performed experiments with smoothed threshold
is e.g. an integer value (see enclosed results in Table 3). Finally, the choice of the
number of gene pairs (parameter k) that constitute splitting node is determined
by internal cross-validation.

4 Experimental Validation

In this section, we present a detailed experimental analysis to evaluate the rel-
ative performance of the proposed weight and hierarchical approach in RXA.
Using several cancer-related gene expression datasets we have checked ARXA
prediction power and confronted its results with popular RXA extensions.

4.1 Algorithms and Datasets

To make a proper comparison with the RXA algorithms, we use the same 8
cancer-related benchmark datasets (see Table 1) that are tested with the EvoTSP
solution [6]. Datasets are deposited in NCBI’s Gene Expression Omnibus and
summarized in Table 1. A typical 10-fold cross-validation is applied and depend-
ing on the system, different tools are used:

Tree Based Advanced Relative Expression Analysis 505

Table 1. Details of gene expression datasets: abbreviation with name, number of genes
and number of instances.

Datasets Genes Instances Datasets Genes Instances

(a) GDS2771 22215 192 (e) GSE10072 22284 107

(b) GSE17920 54676 130 (f) GSE19804 54613 120

(c) GSE25837 18631 93 (g) GSE27272 24526 183

(d) GSE3365 22284 127 (h) GSE6613 22284 105

Table 2. Comparison of RXCT with top-scoring algorithms, including accuracy and
the size of the classifier’s model. The best accuracy for each dataset is bolded.

Dataset TSP TST k-TSP EvoTSP TSPDT ARXA

Acc. Acc. Acc. Size Acc. Size Acc. Node size Acc. Node size Tree size

(a) 57.2 61.9 62.9 10 65.6 4.0 60.1 15.4 70.9 5.7 3.6

(b) 88.7 89.4 90.1 6 96.5 2.1 98.2 1.0 92.5 1.0 1.0

(c) 64.9 63.7 67.2 10 78.1 2.8 72.3 5.8 84.7 7.6 1.4

(d) 93.5 92.8 94.1 10 96.2 2.1 88.3 2.0 95.0 3.0 1.0

(e) 56.0 60.5 58.4 14 66.9 3.1 68.1 4.7 68.3 6.7 3.4

(f) 47.3 50.1 56.2 18 66.2 2.7 67.2 10.9 78.5 8.1 2.2

(g) 81.9 84.2 87.2 14 86.1 4.1 88.6 3.3 94.4 6.7 1.0

(h) 49.5 51.7 55.8 10 53.6 6.1 59.6 7.0 65.6 5.9 2.4

Average 67.4 69.3 71.5 11.5 76.2 2.7 75.3 6.2 81.2 5.6 2.1

– evaluation of TSP, TST, and k-TSP was performed with the AUERA software
[9], which is an open-source system for identification of relative expression
molecular signatures;

– EvoTSP results were taken from the publication [6];
– original TSPDT and ARXA implementations are used.

Due to the performance reasons concerning other approaches, the Relief-F
feature selection was applied and the number of selected genes was arbitrarily
limited to the top 1000. In the experiments, we provide results for the proposed
ARXA solution as well as its simplified variants which uses e.g. integer percent-
age split values.

Experiments were performed on a workstation equipped with Intel Core i5-
8400 CPU, 32 GB RAM and NVIDIA GeForce GTX 1080 GPU card (8 GB
memory, 2 560 CUDA cores). The sequential algorithm was implemented in C++
and the GPU-based parallelization part was implemented in CUDA-C (compiled
by nvcc CUDA 10; single-precision arithmetic was applied).

4.2 Accuracy Comparison of ARXA to Popular RXA Counterparts

Table 2 summarizes classification performance for the proposed solution and its
competitors. The model size of TSP and TST is not shown as it is fixed and

506 M. Czajkowski et al.

Table 3. Comparison of ARXA variants results with different model comprehensibility
settings. Averaged value through all datasets are shown.

Algorithm Accuracy Node size Tree size

ARXAno round 81.2 5.6 2.1

ARXAround 0.5 80.7 4.9 3.1

ARXAround 1.0 79.6 4.6 3.4

equals correspondingly 2 and 3. It is clearly visible that the proposed ARXA
solution managed to outperform all popular RXA classifiers in 6 out of 8 datasets.
The statistical analysis of the obtained results using the Friedman test and the
corresponding Dunn’s multiple comparison test (significance level/p-value equals
0.05), as recommended by Demsar [9] showed that the differences in accuracy
are significant. We have also performed an additional comparison between the
datasets with the corrected paired t-test [24] with the significance level equals
0.05 and 9 degrees of freedom (n-1 degrees of freedom where n = 10 folds). It
showed that ARXA significantly outperforms all algorithms on more than half
datasets.

However, it should be noticed that improving classification accuracy was not
our primary goal. We wanted to make a model in which gene pairs somehow inter-
act with each other more deeply and also to promote finding sub-interactions
between co-expressed genes and pairs. Such improvement in terms of classi-
fication accuracy was a surprise even for us, however, this may indicate the
importance of the founded patterns.

4.3 ARXA Comprehensibility and GPGPU Acceleration

As we mentioned in Sect. 3.2, the fraction value which denotes the relation
between two features can be rounded to improve model comprehensibility.
Table 3 shows the ARXA average accuracy results from the performed exper-
iments with different roundup of the threshold value. Therefore, in the first row
we can see original ARXA version, in second row all the thresholds values in the
tests that constituted splits we rounded to 0.5 and in last row the thresholds
were rounded to the integer values. From the table we can observe, that, on
average, as the thresholds are less precise, the number of tests in internal nodes
decreases while the size of the tree increases. This outcome was consistent to all
tested datasets.

In Figs. 4 and 5 we show an example decision trees induced by ARXA with
and without threshold roundup. In both cases the prediction accuracy is similar
but the structure and relations slightly differs. Although, there are a few simi-
larities especially in the top nodes where e.g. two out of three relations in the
root node from the DT illustrated in Fig. 5 is the same as in Fig. 4. There are
also single genes that appear in both trees but constitute different pairs.

Tree Based Advanced Relative Expression Analysis 507

Fig. 4. An example decision tree induced by ARXA with detailed thresholds for
GSE6613 Parkinson’s disease.

Based on the description of the dataset (GSE6613 series) from GenBank
NCBI [3] we performed a brief examination of one of the ARXA output predic-
tion models (see Figs. 4 and 5). To check if founded genes or gene pair have some
biological meaning we have decoded gene names from GSE6613 with GPL96
platform provided by NCBI. We found out that most of the founded genes are
related with Parkinson’s disease, for example #211249 (gene symbol: GPR68) is
the top significantly deregulated gene identified through integrated analysis in
Parkinson’s disease [25] and gene LSM7 (#204559 s) is reported as significant
in meta-analysis of genome-wide association studies of Parkinson’s disease risk
[4]. This is only an example of a fraction of knowledge discovered by ARXA but
even the presented model is at some point supported by biological evidence in
the literature.

Even with applied feature selection step (to make other algorithms work in a
reasonable time), the number of possible relations for which the GPU needs to
calculate is very high. For example, for N = 1000 genes and M = 100 instances
the number of scores to calculate is over 109 in a root node (sub-nodes have fewer
instances). However, if we would take the full dataset, this number drastically
increases to 1013. With the GPGPU acceleration the score ranking, on average
through all datasets, was reduced from 20 s to 0.15 of a second which is over

Fig. 5. An example decision tree induced by ARXA with rounded to 0.5 thresholds for
GSE6613 Parkinson’s disease.

508 M. Czajkowski et al.

two magnitude faster for a single run. The time included also the data transfer
to and from the GPU. When, the whole data was used, the GPU took up to
several minutes where a single sequential run of a single dataset took over a day.
Through all the runs number of blocks equals to 1024 and threads equals to 128.
In the profiling we noticed that processing too many possible relations by each
thread (high load) slows down the parallelization. By decreasing the offset value
we managed to improve load balancing and thus the overall ARXA speedup.

5 Conclusions

In this paper, we introduce a hybrid approach to analyze gene expression data
which combines the problem-specific methodology with the popular white-box
classifier. The Advanced Relative Expression Analysis (ARXA) fundamentally
changes the RXA solution in the context of relations and pairs ranking. Our
implementation considers involving GPGPU accelerated decision trees in order
to open ARXA on finding interesting hierarchical patterns in subgroups of genes
in a reasonable time. In addition, experiments show that knowledge discovered
by ARXA is accurate, comprehensive and at some point supported by biological
evidence in the literature.

We see many promising directions for future research. In particular, we are
currently working with biologists and bioinformaticians to better understand the
gene relations generated by ARXA. Next, there is still a lot of ways to improve
the GPU parallelization of RXCT, e.g. load-balancing of tasks based on the
number of instances in each node, simultaneous analysis of two branches, better
GPU hierarchical memory exploitation.

It should be noted that most of RXA solutions are not fully detached deci-
sion model from the raw values of the dataset. Such an approach may reduce
robustness to methodological and technical factors, study-specific biases as well
as limits the potential of exploring merged data from different omics, platforms,
and experiments. Most of TSP-family solutions use e.g. raw values in their sec-
ondary rankings, others mean or variance of a given gene in the data. ARXA
does not consider analyzing raw values, therefore in the nearest future we want
to validate our approach on multi-omics data.

Acknowledgments. This project was funded by the Polish National Science Center
and allocated on the basis of decision 2019/33/B/ST6/02386 (first author). The second
and third author were supported by the grant WZ/WI-IIT/3/2020 from BUT founded
by Polish Ministry of Science and Higher Education.

References

1. Afsari, B., Braga-Neto, U.M., Geman, D.: Rank discriminants for predicting phe-
notypes from RNA expression. Ann. Appl. Stat. 8(3), 1469–1491 (2014)

Tree Based Advanced Relative Expression Analysis 509

2. Bacardit, J., et al.: Hard data analytics problems make for better data analysis
algorithms: bioinformatics as an example. Big Data 2(3), 164–176 (2014)

3. Benson, D.A., et al.: GenBank. Nucleic Acids Res. 46(D1), D41–D47 (2018)
4. Chang, D., Nalls, M.A., et al.: A meta-analysis of genome-wide association studies

identifies 17 new Parkinson’s disease risk loci. Nat Genet. 49(10), 1511–1516 (2017)
5. Czajkowski, M., Kretowski, M.: Top scoring pair decision tree for gene expression

data analysis. Adv. Exp. Med. Biol. 696, 27–35 (2011)
6. Czajkowski, M., Kretowski, M.: Evolutionary approach for relative gene expression

algorithms. Sci. World J. 2014, 7 (2014). 593503
7. Czajkowski M., Kretowski M.: Relative evolutionary hierarchical analysis for gene

expression data classification. In: GECCO 2019, pp. 1156–1164 (2019)
8. Czajkowski, M., Kretowski, M.: Decision tree underfitting in mining of gene expres-

sion data. An evolutionary multi-test tree approach. Expert Syst. Appl. 137, 392–
404 (2019)

9. Earls, J.C., et al.: AUREA: an open-source software system for accurate and user-
friendly identification of relative expression molecular signatures. BMC Bioinform.
14, 78 (2013). (Article 19)

10. Geman, D., et al.: Classifying gene expression profiles from pairwise mRNA com-
parisons. Stat. Appl. Genet. Mol. Biol. 3(19) (2004)

11. Huang, S., Chaudhary, K., Garmire, L.X.: More is better: recent progress in multi-
omics data integration methods. Front. Genet. 8(84) (2017)

12. Huang, X., et al.: Analyzing omics data by pair-wise feature evaluation with hori-
zontal and vertical comparisons. J. Pharm. Biomed. Anal. 157, 20–26 (2018)

13. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP complete.
Inf. Process. Lett. 5(1), 15–17 (1976)

14. Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision
tree for large scale data. A GPU-based approach. Soft Comput. 21, 7363–7379
(2017)

15. Kagaris, D., Khamesipour A: AUCTSP: an improved biomarker gene pair class
predictor. BMC Bioinform. 19(244) (2018). (Article 244)

16. Kim, S., Lin, C.W., Tseng, G.C.: MetaKTSP: a meta-analytic top scoring pair
method for robust cross-study validation of omics prediction analysis. Bioinfor-
matics 32(13), 1966–1973 (2016)

17. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013)

18. Kretowski, M.: Evolutionary Decision Trees in Large-scale Data Mining. Studies
in Big Data 59 (2019)

19. Lin, X., et al.: The ordering of expression among a few genes can provide simple
cancer biomarkers and signal BRCA1 mutations. BMC Bioinform. 10(256) (2009)

20. Lo, W.T., et al.: CUDT: a CUDA based decision tree algorithm. Sci. World J.
2014, 12 (2014). 745640

21. Magis, A.T., Price, N.D.: The top-scoring ‘N’ algorithm: a generalized relative
expression classification method from small numbers of biomolecules. BMC Bioin-
form. 13(1), 227 (2012)

22. McDermott, J.E., et al.: Challenges in biomarker discovery: combining expert
insights with statistical analysis of complex omics data. Expert Opin. Med. Diagn.
7(1), 37–51 (2013)

23. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinform. 18(5),
851–869 (2017)

510 M. Czajkowski et al.

24. Tan, A.C., Naiman, D.Q.: Simple decision rules for classifying human cancers from
gene expression profiles. Bioinformatics 21, 3896–3904 (2005)

25. Wang, J., Liu, Y., Chen, T.: Identification of key genes and pathways in Parkinson’s
disease through integrated analysis. Mol. Med. Rep. 16(4), 3769–3776 (2017)

	Tree Based Advanced Relative Expression Analysis
	1 Introduction
	2 Background
	2.1 Relative Expression Analysis
	2.2 Decision Trees
	2.3 GPGPU Parallelization
	2.4 Motivation and Contribution

	3 Tree Based Advanced Relative Expression Analysis
	3.1 ARXA Scoring on GPU
	3.2 ARXA Scoring on CPU

	4 Experimental Validation
	4.1 Algorithms and Datasets
	4.2 Accuracy Comparison of ARXA to Popular RXA Counterparts
	4.3 ARXA Comprehensibility and GPGPU Acceleration

	5 Conclusions
	References

