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Abstract. In this paper we propose a new evolutionary algorithm for
global induction of oblique model trees that associates leaves with
multiple linear regression models. In contrast to the typical top-down
approaches it globally searches for the best tree structure, splitting hyper-
planes in internal nodes and models in the leaves. The general structure
of proposed solution follows a typical framework of evolutionary algo-
rithms with an unstructured population and a generational selection.
We propose specialized genetic operators to mutate and cross-over indi-
viduals (trees). The fitness function is based on the Bayesian Information
Criterion. In preliminary experimental evaluation we show the impact of
the tree representation on solving different prediction problems.

Keywords: data mining, evolutionary algorithms, model trees, oblique
trees, global induction.

1 Introduction

Decision trees [26] are one of the most popular and frequently applied predic-
tion technique in classification and regression problems. Regression and model
trees are now popular alternatives to classical statistical techniques like standard
regression or logistic regression [12].

In this paper we want to investigate a global approach to oblique model tree
induction based on a specialized evolutionary algorithm. This solution extends
our previous research on evolutionary univariate regression and model trees.

1.1 Background

Data mining [10] is a process of extracting useful information, relationships and
hidden patterns from large databases. The tree-based approaches are gaining
in popularity because they are easy to interpret, visualize and their decisions
can be easily explained. The ease of application, fast operation and what may
be the most important, the effectiveness of decision trees, makes them powerful
and popular tool [14]. Decision trees are also applicable when the data does not
satisfy rigorous assumptions required by more traditional methods [12].
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The problem of learning the optimal decision tree is known to be NP-complete
[21]. Consequently, classical decision-tree learning algorithms are based on heuris-
tics such as greedy top-down approach [25]. Starting from the root node it
searches for the locally optimal split (test) according to the given optimality
measure. Next, the training data is redirected to newly created nodes. This
procedure is recursively repeated until stopping criteria are met. Finally, the
post-pruning is applied to improve generalization power of the predictive model.

Most of the tree inducing algorithms partition the feature space with axis-
parallel hyperplanes. These types of trees are called univariate decision trees
since each split in non-terminal node involves a single feature. For continuous-
valued features usually inequality tests with binary outcomes are applied and for
nominal features mutually exclusive groups of feature values are associated with
the outcomes. When more than one feature is taken into account to build a test in
internal node, then we deal with multivariate decision trees. The most common
form of such test is an oblique split, which is based on linear combination of
features (hyper-plane). The decision tree which applies only oblique tests is often
called oblique or linear, whereas heterogeneous trees with univariate, linear and
other multivariate (e.g., instance-based) tests can be called mixed decision trees
[18]. It should be emphasized that computational complexity of the multivariate
induction is generally significantly higher than the univariate induction.

Regression and model trees [12] may be considered as a variant of decision
trees, designed to approximate real-valued functions instead of being used for
classification tasks. The main difference between regression tree and model tree is
that, in the latter, constant value in the terminal node is replaced by a regression
plane. Each leaf of the model tree holds a linear (or nonlinear) model whose
output is the final prediction value. One of the first and most known regression
tree solutions is the CART system [4]. It finds a split that minimizes the sum
of squared residuals and builds a piecewise constant model with each terminal
node fitted by the training sample mean. The accuracy of prediction was later
improved by replacing single values in the leaves by more advanced models: M5
[29] proposed by Quinlan, induces a univariate model tree that contains at leaves
multiple linear models analogous to piecewise linear functions; HTL presented
in [28] goes further and evaluates linear and nonlinear models in the terminal
nodes.

1.2 Motivation

The linear regression is a global model in which a single predictive function holds
over the entire data-space [12]. However, many regression problems cannot be
solved by single regression models especially when the data has many features
which interact in complicated ways. Recursively partitioning the data and fitting
local models to the smaller regions, where the interactions are more simple, is
a good alternative to complicated, nonlinear regression approaches. Such tech-
nique is fast and generally efficient in many practical problems, but obviously
does not guarantee the optimal solution. Due to the greedy nature, algorithms
may not generate the smallest possible number of rules for a given problem [22]



Global Induction of Oblique Model Trees: An Evolutionary Approach 3

and large number of rules results in decreased comprehensibility and often pre-
diction accuracy. Hence, application of evolutionary algorithms (EAs) [20] to the
problem of decision tree induction [2] become increasingly popular alternative
because instead of local search, EAs can perform a global search in the space of
candidate solutions.

In addition, simple univariate tests are convenient, however they generated
trees may be complicated and inaccurate if the data is more suitably partitioned
by not axel-parallel hyper-planes. Therefore in some domains, oblique trees may
result in much smaller and more accurate trees.

In our previous works, we applied EAs to univariate regression [16] and model
trees [6] and investigated the impact of memetic extensions [7]. In this paper we
extend the GMT solution and search also for splitting hyper-planes in internal
nodes. We propose a global approach called oblique Global Model Tree (oGMT )
which finds accurate and less complex solutions to the popular, greedy counter-
parts. New specialized operators for the oblique split search are designed and
a fitness function that penalizes the tree for over-parametrization and reflects
not only the number of nodes but also the complexity of the tests is suitably
defined. Previously performed research on oblique classification trees [15] showed
that the oblique global algorithm managed to find more compact classifiers than
the competitors.

1.3 Related Work

Multiple authors have proposed methods to limit negative effects of inducing
the decision tree with greedy strategy. One of the first attempts to optimize the
overall model tree error was presented in RETRIS [13]. The algorithm simulta-
neously optimizes the split and the models at the terminal nodes to minimize
the global error. However RETRIS is not scalable and does not support larger
datasets because of its huge complexity [22]. SMOTI [19] builds regression mod-
els not only in leaves but also in the upper parts of the tree. Authors claim
that this allows for individual predictors to have both global and local effects
on the model tree. In LLRT [30] authors search for optimal solution by a near-
exhaustive evaluation of all possible splits in a node, based on the quality of fit
of linear regression models in the resulting branches.

In the literature, there are attempts of applying evolutionary approach for
induction of decision trees (please refer to survey [2]). In the TARGET solution
[9], authors propose to evolve a CART -like regression tree with simple operators
and the Bayesian Information Criterion (BIC) [27] as a fitness function. Later
solutions focus on evolving model trees with linear models: E −Motion [1] and
non-linear models: GPMCC [23] in the leaves.

To the best of our knowledge, all evolutionary evolved regression and model
trees have univariate tests in the splitting nodes. There are however, few oblique
regression trees like: SECRET [8] where authors show that the classification ap-
proach which bases on splitting two Gaussian mixtures can find better partitions
than the CART system and solution proposed by Li et al. [17] where a linear
regression tree algorithm finds oblique splits using Principal Hessian Analysis.
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The oblique regression and model trees are not as popular as the axis-parallel
because the tests require greater computational resources and are much more
difficult to interpret than the axis-parallel algorithms.

2 Global Induction of Oblique Model Trees

In this section we would like to present the GMT algorithm for global induc-
tion of oblique model trees. Structure of the proposed solution follows a typical
framework of evolutionary algorithms [20] with an unstructured population and
a generational selection.

2.1 Preliminaries

A learning set is composed of M objects: N -dimensional feature vectors xj =
[xj,1, . . . , xj,N ] (j = 1, . . . ,M), each one with defined dependent variable. The
feature space could be divided into two regions by a hyper-plane:

H(w, θ) = {x : 〈w, x〉 = θ}, (1)

where w = [w1, . . . , wN ] is a weight vector, θ is a threshold and 〈w, x〉 represents
an inner product. If 〈w, xi〉 − θ > 0, it can be said that the feature vector xi is
on the positive side of the hyper-plane H(w, θ).

A dipole [15] is a pair (xi, xj) of feature vectors. A dipole is called long
if feature vectors constituting it has much different values of the dependent
variable. First feature vector that constitutes dipole is randomly selected from
the training objects located in the node. Remaining feature vectors are sorted
decreasingly according to the differences between dependent variable values to
the selected object. To find a second object that constitutes dipole we applied
mechanism similar to the ranking linear selection [20] where the selection of the
object depends only on its position in the sorted list and not on the actual value.
We situate the feature vectors xi and xj on the opposite sides of the dividing
hyper-plane. The hyper-plane H(w, θ) splits the dipole (xi, xj) if:

(〈w, xi〉 − θ) ∗ (〈w, xj〉 − θ) < 0. (2)

2.2 Representation

The oblique model trees are represented in their actual form as binary trees
with splitting hyper-planes in non-terminal nodes and multiple linear models
in the leaves. Each hyper-plane in the tree can be represented by a fixed-size
N + 1-dimensional table of real numbers corresponding to the vector weight w
and threshold θ. Each model in the leaf is constructed using standard regression
technique [24] with objects and feature vectors associated with that node. The
prediction yk(xj) calculated for the k-th leaf and j-th object is explained by a
linear combination of multiple independent variables xj,1, xj,2, . . . , xj,N :

yk(xj) = υk,0 + υk,1 ∗ xj,1 + υk,2 ∗ xj,2 + . . .+ υk,N ∗ xj,N (3)

where υk,0, . . . , υk,N are fixed coefficients that minimizes the sum of squared
residuals of the model in the leaf k.
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2.3 Initialization

In general, initial population should be generated randomly to cover the entire
range of possible solutions. Due to the large solution space, initial individuals
are created by applying the classical top-down algorithm, similarly to the typical
approaches like CART andM5. An effective test in non-terminal node is searched
based on randomly chosen long dipole. The recursive partitioning can finish:

– on a random depth;
– when all the training objects in node are characterized by the same predicted

value (or varies only slightly [29]);
– when the number of objects in a node is lower than the predefined value

(default value: 5).

Next, a multiple linear model is built at each terminal node. To prevent the EA
from being trapped in local optima, initial individuals are induced on a random
subsamples of the training data (10% of data, but not more than 500 objects)
and the potential tests in internal nodes are searched on random subsets of
features (50% of features).

2.4 Fitness Function

The specification of a suitable fitness function is one of the most important
and sensitive element in design of the evolutionary algorithm. The direct min-
imization of the prediction error measured on the learning set usually leads to
the overfitting problem. In this work we continue to use Bayesian information
criterion BIC [27] as a fitness function [6,7]. The BIC formula is given by:

FitBIC(T ) = −2 ∗ ln(L(T )) + ln(n) ∗ k(T ), (4)

where L(T ) is maximum of likelihood function of the tree T , k(T ) is the number
of model parameters and n is the number of observations. The log(likelihood)
function L(T ) is typical for regression models [11] and can be expressed as:

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1], (5)

where SSe(T ) is the sum of squared residuals on the training data of the tree T .
However, when linear tests are considered, it is necessary to change the penalty

for tree over-parametrization. It is rather straightforward that an oblique split
based on few features is more complex than a univariate test. As a consequence,
the tree complexity should not only reflect the tree size and the number of
features that constitute models in the leaves, but also the complexity of the
tests in the internal nodes. However, it is not easy to arbitrarily define the
balance between different measures because it depends on the problem and user
preferences. In such a situation we decided to define the tree complexity k(T ) in
most flexible way to allow the user to tune its final form:

k(T ) = α ∗Q(T ) + β ∗M(T ) + γ ∗ F (T ), (6)
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where Q(T ) is the number of nodes in model tree T and M(T ) is the sum of
the number of all features in the linear models at the leaves. Additional penalty
term F (T ) works only for oblique trees as it sums up the number of features
in multivariate tests. Default values of the parameters are: α = 2.0, β = 1.0
and γ = 1.0, however further research to determine theirs values should be
considered.

2.5 Selection and Termination Condition

Ranking linear selection [20] is applied as a selection mechanism. Additionally,
in each iteration a single individual with the highest value of fitness function
in current population in copied to the next one (elitist strategy). The evolution
terminates when the fitness of the best individual in the population does not
improve during the fixed number of generations. In case of a slow convergence,
maximum number of generations is also specified, which allows us to limit com-
putation time.

2.6 Genetic Operators

Genetic operators are the two main forces that form the basis of evolutionary
systems and provide a necessary diversity and novelty. Tree-based representation
requires developing specialized operators corresponding to the classical mutation
and cross-over. Previously performed research [15] shows that the recombination
of two individuals usually has much higher destructive power and context change
than the mutation, therefore the default probability to select cross-over is equal
0.2 and mutation 0.8.

Cross-over solution starts with selecting positions in two affected individuals.
We propose three variants of recombination [6] that involve exchanging oblique
tests in internal nodes, subtrees and branches between the nodes of individuals.

Mutation solution starts with randomly choosing the type of node (equal
probability to select leaf or internal node). Next, the ranked list of nodes of the
selected type is created and a mechanism analogous to ranking linear selection
is applied to decide which node will be affected. Depending on the type of node,
ranking takes into account the location of the internal node (internal nodes in
lower parts of the tree are mutated with higher probability) and the absolute er-
ror (worse in terms of prediction accuracy leaves and internal nodes are mutated
with higher probability). Previously [5,6] we have proposed several variants of
mutation for univariate tests in internal nodes, models in the leaves and mod-
ifications in the tree structure (pruning the internal nodes and expanding the
leaves). In this paper, we present new mutation operators for modifying oblique
splits in internal nodes:

– test can be replaced by a new, effective one which is searched based on
randomly chosen long dipole;

– hyper-plane can be modified by changing one, randomly chosen weight wi;
– hyper-plane is shifted in such a way that it divides new, randomly chosen

long dipole.
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3 Preliminary Experimental Results

The proposed approach is evaluated on both artificial and real life datasets.
It is compared only to the univariate versions of our global inducers: univariate
Global Regression Tree (uGRT ) [16] and univariate Global Model Tree (uGMT )
[6], since in previous papers [5,6] we compared our solutions with popular coun-
terparts. All presented results correspond to average of 10 runs. The Root mean
squared error (RMSE) is given as the prediction error measure of the tested
systems. Depending on the tree type, complexity measure can cover the tree size
(size) and average number of features in the leaves (model).

The performance of proposed solution is compared on eight artificially gener-
ated datasets illustrated in Figure 1. They are variants of the datasets split plane
and armchair. Each dataset can be perfectly predicted with regression trees
(univariate a and b; oblique c and d) and model trees (univariate e and f ; oblique
g and h). In addition, all algorithms are tested on real-life datasets from UCI
Machine Learning Repository [3].

Table 1 presents characteristics of investigated datasets and obtained results.
Experiments performed on artificial datasets show the importance of tree rep-
resentation in solving different prediction problems. Proposed solution oGMT
has the most advanced splits in internal and the models in the leaves, therefore
theoretically it is capable to perfectly predict values for each dataset. The major
drawback of oGMT is that it requires much more generations to find good solu-
tion. In specified maximum number of generations (default: 100000) algorithm
did not found optimal decisions for each of the 10 runs. Rest of the algorithms
managed to find good decisions only when the tree representation was capable
to do it.

Figure 2 illustrates RMSE and tree size for the best individual so far in
evolution, for each tested algorithm on dataset armchair (b) and armchair (h).
When the data can be perfectly predicted with univariate regression trees (arm-
chair (b)), uGRT and uGMT find optimal decisions almost instantly. Trees with
oblique tests in internal nodes need much more iterations to perfectly predict
data (over 1000) and even more to find the best tree structure. On the other side,
when the armchair (h) with non-axis parallel decision border was investigated,
application of algorithms with univariate tests uGRT and uGMT lead to their
approximation by a very complicated stair-like structure. Similar situation was
for the regression tree oGRT when it tried to predict linear regression models.

Presented in Table 1 differences between algorithms on the real-life datasets
are not so visible. In general, the main benefit of application oblique tests in-
stead of univariate is that the generated trees are much smaller. This applies
to both regression and model trees. Preliminary results suggest also that the
application of oblique tests may improve the prediction performance of GRT
and GMT algorithms however the main drawback is the calculation time. In
addition, there are two possible reasons why oblique trees have slightly lower
than expected RMSE results on Auto − Mpg dataset (uGRT vs oGRT ) and
Pyrimidines dataset (uGMT vs oGMT ). The first plausible reason is the very
slow convergence of the oblique regression and model trees. Because of the much
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Fig. 1. Examples of artificial datasets (split plane - left, armchair - right) that can
be perfectly predicted with univariate (a, b) and oblique (c, d) regression trees and
univariate (e, f) and oblique (g, h) model trees
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Fig. 2. Influence of the tree representation on performance of the best individual on
armchair b (left image) and armchair h (right image) dataset

larger solution space the evolution could have been terminated too quickly. Sec-
ond reason may refer to overfitting the oblique trees to the training data. This
requires further research to determine the penalty term for over-parametrization
in the fitness function.

Table 1. Characteristics of the artificial and real-life datasets (number of ob-
jects/number of numeric features/number of nominal features) and obtained results
for regression trees: univariate uGRT and oblique oGRT ; and for model trees: univari-
ate uGMT and oblique oGMT

uGRT oGRT uGMT oGMT
Dataset Properties RMSE size RMSE size RMSE size model RMSE size model

Split plane (a) 1000/2/0 0.044 2.0 0.080 2.0 0.039 2.0 0.0 0.083 2.0 0.0
Split plane (c) 1000/2/0 0.298 13.2 0.084 2.0 0.304 14.0 0.0 0.065 2.0 0.0
Split plane (e) 1000/2/0 0.369 15.8 1.026 22.2 0.159 2.0 4.0 0.322 2.0 4.0
Split plane (g) 1000/2/0 1.369 22.6 1.093 19.9 1.380 13.4 21.6 0.612 2.2 4.2
Armchair (b) 1000/2/0 0.068 4.0 0.100 4.0 0.068 4.0 0.0 0.100 4.0 0.0
Armchair (d) 1000/2/0 0.262 17.7 0.186 5.2 0.254 18.4 0.0 0.202 6.7 0.0
Armchair (f) 1000/2/0 1.320 20.6 2.897 21.6 0.913 4.0 8.0 0.881 4.1 8.2
Armchair (h) 1000/2/0 2.320 21.5 2.539 27.9 2.019 24.5 29.7 1.300 7.7 13.0

Auto-Mpg 392/4/3 3.212 10.1 3.373 5.4 3.211 3.8 10.2 2.997 2.0 6.8
Pyrimidines 72/27/0 0.108 4.6 0.088 4.5 0.102 2.1 14.1 0.103 2.1 11.8
Triazines 186/60/0 0.146 3.8 0.140 3.1 0.144 2.4 13.7 0.138 2.1 10.7

4 Conclusion and Future Works

In the paper the global induction of oblique model trees was investigated. In
contrast to classical top-down inducers, where locally optimal tests are sequen-
tially chosen, in GMT the tree structure, oblique tests in internal nodes and
models in the leaves are searched in the same time by specialized evolution-
ary algorithm. Preliminary experimental results show that the globally evolved
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oblique regression and model trees are highly competitive compared to univari-
ate counterparts. Extending the representation of tests in internal nodes open
new possibilities in finding better predictions.

Proposed approach is constantly improved. Further research to determine
more appropriate value of complexity penalty term in the BIC criterion is ad-
vised and other commonly used measures should be considered. Currently we are
working on a mixed GMT that will be able to self-adapt structure of the tree:
appropriate test in internal node (univariate or oblique) and leaf type (regression
or model). On the other hand, we plan to parallelize the evolutionary algorithm
and add local optimizations in order to speed-up and focus evolutionary search.
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