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Abstract. Memetic algorithms are popular approaches to improve pure
evolutionary methods. But were and when in the system the local search
should be applied and does it really speed up evolutionary search is
a still an open question. In this paper we investigate the influence of
the memetic extensions on globally induced regression and model trees.
These evolutionary induced trees in contrast to the typical top-down
approaches globally search for the best tree structure, tests at internal
nodes and models at the leaves. Specialized genetic operators together
with local greedy search extensions allow to the efficient tree evolution.
Fitness function is based on the Bayesian information criterion and mit-
igate the over-fitting problem. The proposed method is experimentally
validated on synthetical and real-life datasets and preliminary results
show that to some extent memetic approach successfully improve evolu-
tionary induction.
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1 Introduction

The most popular algorithms for decision tree induction are based on top-down
greedy search [10]. Top-down induction starts from the root node where locally
optimal split (test) is searched according to the given optimality measure. Then,
the training data is redirected to newly created nodes and this process is repeated
recursively for each node until some stopping-rule is reached. Finally, the post-
pruning is applied to improve the generalization power of the predictive model.

Nowadays, many research focus on approaches that evolve decision trees as
alternative heuristics to the traditional top-down approach [2]. The main advan-
tage of evolutionary induced trees over greedy search methods is the ability to
avoid local optima and search more globally for the best tree structure, tests
at internal nodes and models at the leaves. On the other hand the induction of
global regression and model trees is much slower. One of the possible solutions
to speed up evolutionary approach is a combination of evolutionary algorithms
with local search techniques, which is known as Memetic Algorithms [6].

In this paper, we focus on regression and model trees that may be considered
as a variant of decision trees, designed to approximate real-valued functions.

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 174–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



MA for Regression and Model Trees 175

Main difference between regression tree and model tree is that, for the latter,
constant value in the terminal node is replaced by a regression plane. In our pre-
vious works we investigated the global approach to obtain accurate and compact
regression [8] and model trees with simple linear regression [4] and multivariate
linear regression [5] at the leaves. We also investigated the influence of memetic
extensions on the global induction of classification trees [7]. In this paper we
would like to apply a similar approach for globally induced regression and model
trees.

The rest of the paper is organized as follows. In the next section a memetic
induction of regression and model trees is described. Experimental validation of
the proposed approach on artificial and real-life data is presented in section 3. In
the last section, the paper is concluded and possible future works are sketched.

2 Memetic Induction of Regression and Model Trees

In this section we present a combination of evolutionary approach with local
search techniques in inducing the regression and model trees. The general struc-
ture of proposed solution follows a typical framework of evolutionary algorithms
[9] with an unstructured population and a generational selection. New memetic
extensions are proposed in 2.2 and 2.4.

2.1 Representation

Regression and model trees are represented in their actual form as classical uni-
variate trees (tests in internal nodes are based on a single attribute). Depending on
the tree type, each leaf of the tree can contain a mean of dependent variable from
training objects (regression trees) or a linear model that is calculated at each ter-
minal node of the model tree using standard regression technique (model trees).
Additionally, in every node information about learning vectors associated with
the node is stored. This enables the algorithm to perform more efficiently the lo-
cal structure and tests modifications during applications of genetic operators.

2.2 Memetic Initialization

Initial individuals are created by applying the classical top-down algorithm [10].
At first, we learn standard regression tree that has a mean of dependent variable
values from training objects at each leaf. The recursive partitioning is finished
when all training objects in the node are characterized by the same predicted
value (or it varies only slightly, default: 1%) or the number of objects at node
is lower than the predefined value (default value: 5). Additionally, user can set
the maximum tree depth (default value: 10) to limit initial tree size. Next, if
necessary, a linear model is calculated at each terminal node of the model tree.

Traditionally, the initial population should be generated randomly to cover the
entire range of possible solutions. Due to the large solution space the exhaus-
tive search may be infeasible. Therefore, while creating initial population we
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search for a good trade off between a high degree of heterogeneity and relatively
low computation time. To create initial population we propose several memetic
strategies which involves employing the locally optimized tests and models on
randomly chosen internal nodes and leaves. For all non-terminal nodes one of
the four test search strategies is randomly chosen:

– Least Squares (LS) function reduces node impurity measured by sum of
squares,

– Least Absolute Deviation (LAD) function reduces the sum of absolute devi-
ations. It has greater resistance to the influence of outlying values to LS,

– Mean Absolute Error (MAE) function which is more robust and also less
sensitive to outliers to LS,

– dipolar, where a dipol (a pair of feature vectors) is selected and then a test
is constructed which splits this dipole. First instance that constitutes dipol
is randomly selected from the node. Rest of the feature vectors are sorted
decreasingly according to the difference between dependent variable values
to the firstly chosen instance. To find a second instance that constitutes dipol
we applied mechanism similar to the ranking linear selection [9].

For the leaves, algorithm finds the locally optimal model that minimizes the sum
of squared residuals for each attribute or for randomly chosen one.

2.3 Genetic Operators

To maintain genetic diversity, we have proposed two specialized genetic opera-
tors corresponding to the classical mutation and cross-over. At each evolutionary
iteration one of the operators is applied with a given probability (default prob-
ability of selecting mutation equals 0.8 and cross-over 0.2) to each individual.
Both operators have influence on the tree structure, tests in non-terminal nodes
and models at the leaves. Cross-over solution starts with selecting positions in
two affected individuals. In each of two trees one node is chosen randomly. We
have proposed three variants of recombination [4] that involve tests, subtrees and
branches exchange. Mutation solution starts with randomly choosing the type
of node (equal probability to select leaf or internal node). Next, the ranked list
of nodes of the selected type is created and a mechanism analogous to ranking
linear selection is applied to decide which node will be affected. Depending on
the type of node, ranking take into account the location of the internal node
(internal nodes in lower parts of the tree are mutated with higher probability)
and the absolute error (worse in terms of prediction accuracy leaves and internal
nodes are mutated with higher probability). We have proposed several variants
of mutation for internal node [4] and for the leaf [5] that involve tests, models and
modifications in the tree structure (pruning the internal nodes and expanding
the leaves).

2.4 Memetic Extensions

To improve the performance of evolutionary process, we propose additional local
search components that are built into the mutation-like operator. With the user
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defined probability a new test can be built on a random split or can be locally
optimized similarly to 2.2. Due to the computational complexity constraints, we
calculate optimal test for single, randomly chosen attribute. Different variant of
the test mutation involve shifting the splitting threshold at continuous-valued
feature which can be locally optimized in the similar way. In case of model trees,
memetic extension can be used to search for the linear models at the leaves. With
the user defined probability a new, locally optimized linear regression model is
calculated on a new or unchanged set of attributes.

In previous research, after performed mutation in internal nodes the models
in corresponding leaves were not recalculated because adequate linear models
could be found while performing the mutations at the leaves. In this paper we
test the influence of this recursive model recalculations as it can also be treated
as local optimization.

2.5 Fitness Function, Selection and Termination Condition

A fitness function is one of the most important and sensitive element in the
design of the evolutionary algorithm. It measures how good a single individual
is in terms of meeting the problem objective and drives the evolutionary search
process. Direct minimization of the prediction error measured on the learning
set usually leads to the overfitting problem. In a typical top-down induction of
decision trees [10], this problem is partially mitigated by defining a stopping
condition and by applying a post-pruning.

In our previous works we used different fitness functions like Akaike’s infor-
mation criterion (AIC) [1] and Bayesian information criterion (BIC) [11]. In this
work we continue to use BIC as a fitness function with settings like in [5] but
with new assumption. When the sum of squared residuals of the tree equals to
zero the original BIC fitness is equal infinity therefore no better individual can
be found. In our research we continue the search to find the best individual with
the lowest complexity.

Ranking linear selection [9] is applied as a selection mechanism. Additionally,
in each iteration, single individual with the highest value of fitness function in
current population in copied to the next one (elitist strategy). Evolution termi-
nates when the fitness of the best individual in the population does not improve
during the fixed number of generations. In case of a slow convergence, maximum
number of generations is also specified, which allows to limit the computation
time.

3 Experimental Validation

The proposed memetic approach is evaluated on both artificial and real life
datasets. It is compared only to the pure evolutionary versions of our global
inducer since in previous work [4] we had a detailed comparison of our solutions
with popular counterparts. All results presented in this paper correspond to
averages of 10 runs and were obtained by using test sets (when available) or
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by 10-fold cross-validation. Root mean squared error (RMSE) is given as the
prediction error measure of the tested systems. The number of nodes is given as
a complexity measure (size) of regression and model trees.

3.1 Synthetical Datasets

In the first group of experiments, two simple artificially generated datasets illus-
trated in figure 1 are analyzed. Both datasets have the same analytically defined
decision borders and contain two independent and one dependent feature with
5% noise. Dataset armchair1 was designed for the regression trees (dependent
feature contains only a few distinct values) and armchair2 for the model trees
(dependent variable is modeled as a linear function of single variable). One thou-
sand observations for each dataset were divided into a training set (33.3% of
observations) and testing set.

In order to verify the impact of memetic approach on the results, we prepared
a series of experiments for global regression trees GRT and global model trees
GMT. Let m denote the percentage use of local optimizations in the mutation of
evolutionary induced trees and equals: 0%, 10% or 50%. The influence of these
memetic components on the evolutionary process is illustrated in the figure 2 for
GRT and in figure 3 for GMT. On both figures the RMSE and the tree size is
shown.

Illustrations on the left side, present the algorithms GRT and GMT in which
after each performed mutation in the internal node corresponding leaves were
not recalculated since they could be found during the leaves mutation. In the
illustrations on the right, for the algorithms denoted as GRTr and GMTr, all
the mean values or models in corresponding leaves were recursively recalculated
which can also be treated as local optimization 2.4.

In table 1 we summary the results for the figure 2. All the algorithms man-
aged to find minimum RMSE and the optimal tree size which was equal 7.
Stronger impact of the memetic approach results in significantly faster algo-
rithm convergence however it also extends the average iteration time. The pure
evolutionary algorithm GRT managed to find optimal solution but after 28000
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Fig. 1. Three-dimensional visualization of artificial datasets: armchair1 - left, arm-
chair2 - right
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Fig. 2. The influence of memetic parameter m on the performance of the algorithm
without (GRT - left) , or with (GRTr - right) recursive recalculations
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Fig. 3. The influence of memetic parameter m on the performance of the algorithm
without (GMT - left), or with (GMTr - right) recursive recalculations

iterations where for example GRTr with memetic impact m = 50% need only
100 generations. We can observe that the best performance was achieved for the
GRTr algorithms with local optimization m equal 10%.

Dataset armchair2 was more difficult to analyse and none of the GMT and
GMTr algorithm presented in figure 3 and described in table 2 managed to find
the optimal solutions. Similarly to the previous experiment, the algorithms with
memetic approach convergence much faster and were able to find good results
even after few iterations. The GMTr with m equal 50% managed to achieve the
highest performance in the terms of RMSE and the total time.

3.2 Real-Life Datasets

In the second series of experiments, two datasets from UCI Machine Learning
Repository [3] were analyzed to assess the performance of memetic approach on
real-life problems. Table 3 presents characteristics of investigated datasets and
obtained results after 5000 performed iterations.

We can observe that for the higher memetic impact, the RMSE is the smallest
but at the cost of the evolution time. Additional research showed that if we run
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Table 1. Results of the GRT and GRTr algorithms for the armchair1 dataset

Algorithm GRT0 GRT10 GRT50 GRTr0 GRTr10 GRTr50
performed iterations 28000 6400 4650 970 190 100
average loop time 0.0016 0.0044 0.011 0.0017 0.0045 0.012
total time 44.8 28.2 51.2 1.65 0.855 1.2
RMSE 0.059 0.059 0.059 0.059 0.059 0.059
size 7 7 7 7 7 7

Table 2. Results of the GMT and GMTr algorithms for the armchair2 dataset

Algorithm GMT0 GMT10 GMT50 GMTr0 GMTr10 GMTr50
performed iterations 20000 20000 20000 20000 20000 20000
average loop time 0.0040 0.0060 0.011 0.0041 0.0063 0.011
total time 80 120 220 82 126 220
RMSE 0.047 0.044 0.045 0.046 0.044 0.045
size 16 18 17 16 17 16

Table 3. Results of the GMT and GMTr algorithms for the real-life datasets

Dataset Alg. GRT0 GRTr0 GRTr10 GRTr50 GMT0 GMTr0 GMTr10 GMTr50
Abalone RMSE 2.37 2.34 2.31 2.30 2.25 2.23 2.23 2.23
inst: 4177 size 39 35 35 39 17 15 13 15
attr: 7/1 time 52 56 207 414 149 336 521 1240

Kinemaics RMSE 0.195 0.191 0.186 0.185 0.185 0.179 0.176 0.174
inst: 8192 size 77 109 129 109 59 61 59 81
attr: 8 time 96 99 719 1429 285 442 1203 2242

the pure evolutionary algorithm for the same amount of time as GRTr50 or
GMTr50 the results would be similar. Therefore, if we consider the time limit,
the global trees with small memetic impact (m = 10%) would achieved the
highest performance in the terms of RMSE and size.

4 Conclusion

In the paper the memetic approach for global induction of decision trees was in-
vestigated. We have assessed the impact of local optimizations on evolutionary
induced regression and model trees. Preliminary experimental results suggest
that at some point memetic algorithms successfully improve evolutionary induc-
tion. Application of the memetic approach results in significantly faster algorithm
convergence however it also extends the average iteration time. Therefore, too
much of local optimizations may not really speed up the evolutionary process.
Experimental results also suggest that additional recursive model recalculations
after performed mutation for corresponding leaves may be a good idea.
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Further research to fully understand the influence of the memetic approach for
the decision trees is advised. Currently we plan to analyze each local optimization
separately to see how it affects three major elements of the tree: structure, test
and models at the leaves.
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