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ABSTRACT
Relative Expression Analysis (RXA) focuses on finding interactions
among a small group of genes and studies the relative ordering of
their expression rather than their raw values. Algorithms based
on that idea play an important role in biomarker discovery and
gene expression data classification. We propose a new evolution-
ary approach and a paradigm shift for RXA applications in data
mining as we redefine the inter-gene relations using the concept of
a cluster of co-expressed genes. The global hierarchical classifica-
tion allows finding various sub-groups of genes, unifies the main
variants of RXA algorithms and explores a much larger solution
space compared to current solutions based on exhaustive search. Fi-
nally, the multi-objective fitness function, which includes accuracy,
discriminative power of genes and clusters consistency, as well
as specialized variants of genetic operators improve evolutionary
convergence and reduce model underfitting. Importantly, patterns
in predictive structures are kept comprehensible and may have
direct applicability. Experiments carried out on 8 cancer-related
gene expression datasets show that the proposed approach allows
finding interesting patterns and significantly improves the accuracy
of predictions.

CCS CONCEPTS
•Computingmethodologies→Classification and regression trees;
Supervised learning by classification; • Applied computing →
Bioinformatics.
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1 INTRODUCTION
Relative Expression Analysis (RXA) plays an important role in
biomarker discovery and genomic data classification [12]. In a pio-
neer research [13], authors focus on ordering relationships between
the expression of small sets of genes by defining and using ranks of
genes instead of their raw expression values. The classification al-
gorithms based on that idea appeared robust to small perturbations
of gene expression values and insensitive to commonly used data
normalization and standardization procedures. The RXA algorithms
managed to identify many interesting gene-gene interactions and
played important role in a biomarker discovery [19]. The influence
of RXA solutions could be even greater, however, the computational
complexity of the algorithms that use exhaustive search strongly
limits the number of genes that can be analyzed [23]. This indicated
the direction of most of the current solutions to perform rigor-
ous feature selection and to limit the complexity of the analyzed
relations to a minimum.

In order to change that trend, we propose an evolutionary ap-
proach called Relative Evolutionary Hierarchical Analysis (REHA)
which unifies the main variants of RXA algorithms and redefines
the inter-features relations. We have deliberately removed "expres-
sion" from the name as we believe our solution can be successfully
applied in the future for other types of omics data like RXA al-
gorithms are, for example in metabolomics [20] and proteomics
[18]. However, in this study, we limit REHA description to the gene
expression data.

Proposed solution redefine in a significant way the RXA concept
with hierarchical gene clusters. A gene cluster is a part of a gene
family, which is a set of homologous genes within one organism.
It is composed of two or more genes found within an organism’s
DNA that encode for similar polypeptides, or proteins, which col-
lectively share a generalized function. The use of information on
subgroups of attributes is particularly important in the problem of
classification and selection of genomic data [28].

Themost significant novelty in the proposed solution is hierarchi-
cal clusters that are applied to find interactions and sub-interactions
between co-expressed and epistasis genes. It combines Top-Scoring-
Pair (TSP) [13] concept from the RXA and a multi-test solution from
the decision trees [9]. With additional improvements like:

• built-in information about the discriminatory power of genes;
• specialized variants of genetic operators like two-level mu-
tation;

• multi-objective fitness function, which includes classification
accuracy, clusters consistency and external gene ranking;

we managed to not only improve the evolutionary convergence
but also reduce possible model under and over-fitting to the data.
A preliminary validation using 8 cancer-related gene expression
datasets has shown that the REHA solution significantly improves
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the accuracy of predictions in comparison to the rest of the ma-
jor variants of RXA solutions. Importantly, the prediction model
composed of hierarchical clusters is comprehensible and may have
direct applicability.

In this paper, we propose a paradigm shift for the known RXA
classifiers. Currently, all algorithms focus on a group of gene pairs
that collectively improve only the classification accuracy. Such an
approach does not promote finding relations between the gene pairs
but only gene-gene relations that can be detected within the pair
(in some cases triplet). We believe, that focusing on an evolutionary
hierarchical split based on gene clusters rather than a group of
mostly unrelated pairs of genes may improve not only classifiers
performance and generalization ability but above all else allows
finding interesting patterns that may appear in each cluster.

2 BACKGROUND
With the rapid development and availability of genomic research, a
large number of gene expression data sets have become publicly
available [30]. However, genomic data is still challenging for com-
putational tools and mathematical modeling due to the high ratio
of features/observations as well as enormous genes redundancy.
Although in the literature wemay find a good number of supervised
machine learning algorithms, most of the methods provide ’black
box’ decision rules involving many genes combined in a highly
complex fashion in order to achieve high predictive performance.
However, it can be observed that there is a strong need for ’white
box’, comprehensive classification models which may actually help
in understanding and identifying relationships between specific
genes [1].

2.1 Algorithms for relative expression analysis
Among new computational tools designed to extract important
and meaningful rules from gene expression data, RXA algorithms
are gaining popularity. The RXA taxonomy that includes the main
development paths is illustrated in Figure 1.

A Top-Scoring Pair (TSP) is the first and the most popular RXA
solution proposed by Donald Geman [13]. It uses a pairwise com-
parison of gene expression values and searches for a single pair of
genes with the highest rank. Let xi and x j be the expression values
of two different genes from available set of genes and there are only
two classes: normal and disease . At first, algorithm calculates the
probability of the relation xi < x j between those two genes in the
objects from the same class:

Pi j (normal) = Prob(xi < x j |Y = normal) (1)

and
Pi j (disease) = Prob(xi < x j |Y = disease), (2)

where Y denotes the class of the objects. Next, the score for this
pair of genes (xi , x j ) is calculated:

∆i j = |Pi j (normal) − Pi j (disease)|. (3)

This procedure is repeated for all distinct pairs of genes and the
pair with the highest score becomes titled top scoring pair. In case
of a draw, a secondary ranking that bases on genes expression
differences in each class and object is used [31]. Finally, for a new
test sample, the relation between expression values of the top pair
of genes is checked. If the relation holds, then the TSP predictor

votes for the class that has the higher probability Pi j in the training
set, otherwise it votes for the class with a smaller probability.

The k-TSP algorithm [31] is one of the first extensions of the TSP
solution. It focuses on increasing the number of pairs in the predic-
tion model and applies no more than k top scoring disjoint gene
pairs with the highest score, where the parameterk is determined by
the internal cross-validation. This method was later combined with
a top-down induced decision tree in an algorithm called TSPDT [8].
In this hybrid solution, each non-terminal node of the tree divides
instances according to a splitting rule that is based on TSP or k-TSP
accuracy.

Different approaches for the TSP extension focus on the rela-
tionships between more than two genes. Algorithms Top Scoring
Triplet (TST) [19] and Top Scoring N (TSN) [23] analyze all possible
ordering relationships between the genes, however, the general
concept of TSP is retained.

One of the first heuristic method applied to RXA was the evo-
lutionary algorithm called EvoTSP [7] that was later extended in
the TIGER system [6]. The authors proposed a simple evolutionary
search for the k-TSP and TSN-like rules. Performed experiments
showed that even this simple evolutionary search is a good alterna-
tive to the traditional RXA algorithms.

Finally, there are many variations of the TSP-family solutions
that propose new ways to rank the gene pairs of different systems
that inherit the RXAmethodology. Among them, we can distinguish
trend-based approach [32], AUCTSP classifier that uses ROC curve
[17] or VH-k-TSP [16] that focus on vertical and horizontal genes
relations. The RXA analysis and the TSP solution are also applied
as a feature selection for more complex classifiers [29, 33]. What’s
more, the strength and simplicity of RXA has been recognized
outside genomics data and is being successfully used in proteomic
[18] and metabolomic [21] analysis.

2.2 Limitations of the RXA algorihtms
The main drawback of RXA algorithms which affects the rest of is-
sues concerning various restrictions and the depth of interactions is
enormous computational complexity that equals O(k ∗ ZN ), where
k is the number of top-scoring groups, Z is the number of ana-
lyzed genes and N is the size of a group of genes which ordering
relationships is searched. In addition, calculation of all possible
gene pairs or gene groups strongly limits the number of genes and
inter-relations that can be analyzed. The largest so far ordering
relationship tested a group of 4 genes (N=4) but only when the
total number of analyzed genes was heavily reduced by the feature
selection to a few hundred [23]. Although the parallelization of
the algorithm managed to speed up calculation by two orders of
magnitude [22], it is still computationally infeasible to calculate on
a full gene expression dataset.

Another RXA limitation concerns the need of presenting the
parameters k and N for the algorithms. It is almost impossible
to define, for a particular problem in advance, what is the type of
relationships in a dataset and howmany genes or gene-pairs should
be involved. For the k-TSP algorithm, the parameter k is determined
by the internal cross-validation which increases the calculation time
and decreases the size of an already small training set. It is also not
clear which of the TSP solution should be applied: TSP, k-TSP, TSN
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Top Scoring Pair - TSP (xi,xj) 

k-Top Scoring Pairs
  {(xi,xj), ... ,(xm,xn)}

TSP Decision Tree
         (TSPDT)

Other solutions
and applications

Top Scoring 'N'
   (xi,xj, ... , xk)

Proteomics & Metabolomics

Feature selection

GPU implementation

     ...  

Evolutionary TSP
(EvoTSP & TIGER) 

Bayesian extension

Multi-test Decision Tree

(MTDT)

Feature selection

(Refief-F)

Relative Evolutionary 
Hierarchical Analysis

(REHA)

Partial extensions

Figure 1: The general taxonomy of the family of Top Scoring Pair algorithms and relations with the REHA system.

or TSPDT and due to the computational complexity, the potentially
hybrid solutions like k-TSN or decision tree with TSN were never
published.

One of the ways to extend the search for more complex relations
between the genes is the application of some heuristic methods.
The EvoTSP and TIGER algorithms managed to limit the afore-
mentioned drawbacks of RXA algorithms through the evolutionary
approach. Proposed specialized EAs search for the weight top scor-
ing pairs and allows exploring larger solution space. As they do not
calculate all combinations of genes, they require less computation
time in the analysis. However, their main disadvantage is that they
consider only ’flat’ rules and do not offer to find any sub-relations
within the genes. In fact, the main and the only objective of the
current RXA solutions is the accuracy of prediction. This implies
that the pairs that constitute all aforementioned systems may not
really be related or co-expressed. It can be compared to the random
forests where each tree participates in the voting and in the final
decision but no relation between the individual trees is searched
or desired. Proposed REHA algorithm addresses and at least limits,
the aforementioned problems.

3 EVOLUTION OF HIERARCHICAL
CO-EXPRESSED GENE CLUSTERS

In this section, we present our Relative Evolutionary Hierarchical
Analysis (REHA) algorithm. The proposed solution overall structure
is based on a typical evolutionary algorithm (EA) schema [24] with
an unstructured population and generational selection (ranking
linear selection and elitist strategy are applied).

3.1 Representation
Associations between the genes may be represented by complicated
structures in which the number of relations, their character and the
number of affected genes is not known in advance. That is why we
opted for a hierarchical tree-based representation in which individ-
uals are processed in their actual form. Knowledge representation

{(x1 > x3), (x7 > x2), (x1 > x11), (x2 > x3), (x3 > x4)}

Class A{(x11 > x5), (x7 > x8), (x2 > x9)}

Class A Class B

primary pair surrogate pairs

gene clusters

class

label

Figure 2: An example representation of REHA

structure is made up of nodes and branches, where: each inter-
nal node is associated with a gene cluster; each branch represents
the split outcome, and each leaf (terminal node) is designed by a
class label. Figure 2 illustrates an example tree representation of an
induced REHA model.

Building blocks of a gene cluster are pairs of genes, each of which
has a representation as in the TSP algorithm. A gene cluster can
be created with a set of any gene pairs, as shown in Figure 2. This
allows for the gene cluster to unify previous TSP extensions as it
covers all possible relations not limited to disjoint gene pairs. In
addition, each gene has additional knowledge of discrimination
power rank, that is provided in REHA input and later applied in
population initialization; gene cluster searches; different variants of
genetic operators and fitness. In our research, we used the Relief-F
[26] algorithm, which is commonly applied in the feature selection
of gene expression data [15]. If necessary, the list of ranked genes
submitted to the REHA can also be manually modified, for example,
to focus on biomarker genes for a given disease. It should be noticed
that at this step no attributes are automatically excluded from the
dataset, so the REHA solution can work on all available genes. In
this way, the algorithm is able to find interesting relationships also
in low ranked genes. This would be not possible if the standard
feature selection was applied as it takes place in most of studies.

We define a single split ht as a gene cluster in which pairs of
genes are tightly linked and could participate in a common path in
a hierarchical structure. A similar solution can be identified in the
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multi-test decision trees [9] in which a split in each non-terminal
node that is composed of several univariate tests that branch out
the tree in a similar way. The reason for adding further tests in [9]
was motivated by reducing the classifier under-fitting the data due
to the low complexity of the classification rule. We believe that this
solution can also be applied to finding groups of co-expressed and
related epistasis genes.

In each node, we identify a pair of genes marked as primary
pair (pp). The remaining pairs in the set are called surrogate pairs
(sp). Each surrogate pair is constructed with at least one different
attribute to the primary pair. It is ranked in terms of how good
it mimics the primary pair measured by the number of the same
observations that go to the corresponding sub-groups. This way the
surrogate pairs support the division of instances carried out by the
primary pair, but with the use of remaining genes. The measure of
similarity, denoted as resemblance (ri j ), for a gene cluster located
in the i-th node (hti ) between the j surrogate pair (spi j ) and the
primary pair (ppi ) is the number of observations routed in the same
way to all observations in the node:

ri j =
|Xi j |

|Xi |
, (4)

where |Xi j | is the number of instances routed by spi j in the same
way as ppi , and (Xi ) is the set of instances in the i-th node.

The splitting criterion is guided by a majority voting mechanism
in which all pair components of the gene cluster have the same
weight. This way surrogate pairs have a considerable impact (posi-
tive or negative) on gene cluster decisions, as they can prevail over
the primary pair decision. In case of a draw, the vote of the primary
pair is decisive.

3.2 Initialization
In order to maintain a balance between exploration and exploita-
tion, initial individuals are created by using a simple top-down
algorithm with randomly selected sub-samples of original training
data. In each internal node of the hierarchical REHA structure, the
system divides the training instances that reach this particular point
with the decision determined by the gene cluster. The algorithm
for creating a new hierarchical split hti works as follows. In the
beginning, the first attribute of the primary pair ppi is selected. Due
to a large number of possible genes, we have applied an exponential
ranking selection [3] to more often include top genes from the data.
To find an attribute a list of possible TSP-like pair candidates is
created from a subset of available genes (default: 50 genes selected
alike the first attribute due to performance reasons). The criterion
for selecting the best pair that will become ppi was inspired by
decision trees and is based on the information gain metric [4].

Next, a random even number (default: j < 6) of the spi j surrogate
pairs is created, each on different attributes. The procedure for
searching a surrogate pair attribute is analogous to the primary
pair, but a second attribute that constitutes the pair is chosen in
a slightly different way. Instead of the search for a pair that has
the highest information gain, the algorithm searches for one that is
more likely to branch instances like ppi . As finding the surrogate
pairs is performed much more often, for the performance reasons
only 20 genes are selected as potential candidates to create spi .

3.3 Operators
In order to preserve genetic diversity, the GDT system applies two
specialized genetic meta-operators corresponding to the classical
mutation and crossover. Both operators may have a two-level influ-
ence on the individuals as either hierarchical tree structure either
a gene cluster can be modified. Depending on the level, different
aspects are taken into account to determine the crossover or muta-
tion point. If the change considers the overall hierarchical structure,
the level of the tree is taken into account. The modification of the
top levels is performed less frequently than the bottom parts as the
change would have a much bigger, global impact. The probability of
selection is proportional to the rank in a linear manner. Examples
of such variants are adding/deleting a node in the case of mutation
and tree-branch crossover.

If the change considers the gene clusters their quality is taken
into account as the ones with the higher prediction, per instance, are
more likely to be changed. However, if the change considers single
surrogate pair within a gene cluster, the resemblance ranking is
used. In the case ofmutation it can be: changing, removing or adding
surrogate pairs of genes; modifying a primary pair by changing
one or both attributes; or switching primary pair with one of the
randomly selected surrogate pairs. The last two variants require
updating the surrogates by deleting one of their attributes and
finding a new one like in the general surrogate pair construction.
Crossover variants allow whole gene clusters exchange as well as
randomly selected pairs of genes between the individuals.

3.4 Fitness
In the case of hierarchical classification, it is recommended to max-
imize the accuracy and minimize the complexity of the output tree.
However, in the case of gene expression data, these criteria cannot
be applied directly. The main reason is the large disproportion be-
tween the number of instances and the attributes, which may cause
the classifier to underfit the learning data as even a simple model
can predict training data perfectly. On the other hand, complex
gene clusters can be more difficult to analyze and interpret.

Considering our motivations and goals, the desired hierarchical
classifier should have gene clusters consisting of several highly
ranked pairs that branch out the nodes in a similar way. Therefore,
the proposed fitness function should promote individuals with:

a) high accuracy on the training set;
b) relatively large size of gene clusters;
c) high resemblance of the gene pairs;
d) low cost of attributes that constitute the cluster.

Therefore, the REHA system maximizes the fitness function, which
has the following form:

Fitness(H ) = Q(H ) + alpha ∗ R(H ) − beta ∗Cost(H ), (5)

where: Q(H ) is the accuracy, R(H ) is the sum of R(Hi ) in all nodes
of the H hierarchy, Cost(H ) is the sum of the costs of attributes
constituting clusters. The default parameters values are:alpha = 0.2
and beta = 0.2, and more information on tuning these parameters
can be found in the next section.

1159



Relative evolutionary hierarchical analysis for gene expression data classification GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Table 1: Details of gene expression datasets for tuning (t) and
testing (a)-(h). The dataset nameswith abbreviation, number
of genes and number of instances.

Datasets Genes Instances Description
(t) GSE4290 22215 180 Sepsis
(t) GSE5772 54675 94 Glioma tumor
(a) GDS2771 22215 192 Lung cancer
(b) GSE17920 54676 130 Hodgkin lymphoma
(c) GSE25837 18631 93 Chronic loneliness
(d) GSE3365 22284 127 Inflammatory Bowel disease
(e) GSE10072 22284 107 Lung adenocarcinoma
(f) GSE19804 54613 120 Lung cancer
(g) GSE27272 24526 183 Impact of tobacco smoke
(h) GSE6613 22284 105 Parkinson’s disease

Table 2: REHA parameters

Basic EA parameters
Population size: 100 individuals
Elitism rate: 1% of the population
Max generations: 1000
Mutation rate: 90% assigned to the individual
Crossover rate: 10% assigned to the individual

Let us consider an internal Hi node with hti gene cluster. Then:

R(Hi ) =
|Xi |

|X |
∗

|hti |−1∑
j=1

ri j , (6)

where X is a learning set, Xi is a set of instances in i-th node, and
|hti | is the size of a gene cluster. If a gene cluster is composed of a
single pair, then R(Hi ) equals 0.

The cost of attributes in the cluster hti depends on their rank,
and the number of instances that reach the i node:

Cost(Hi ) =
|X |

|Xi |
∗ (C(ppi ) +

|hti |−1∑
j=1

C(spi j )), (7)

where j is the number of sp in i-th cluster, C(ppi ) and C(spi j ) are
the costs of the pairs equal to the sum of their attributes (genes)
costs. The cost of a gene range from 0 and 1, while 0 corresponds
to the highest ranked gene and 1 is equal to the worst ranked gene.
The reason why Cost(Hi ) increases when the number of instances
in a node decreases is to avoid the overfitting in the lower parts of
the hierarchy, as this will eventually limit the size of the cluster.

4 EXPERIMENTS
In this section, we present a detailed experimental analysis to eval-
uate the relative performance of the proposed evolutionary hier-
archical gene cluster approach. Using several cancer-related gene
expression datasets we have checked REHA prediction power and
confronted its results with popular RXA extensions.
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Figure 3: Impact of the resemblance: alpha and cost: beta pa-
rameters on REHA system performance

4.1 Setup
To make a proper comparison with the RXA algorithms, we used
the same 8 cancer-related benchmark datasets that were tested
in the TIGER solution [6]. Additional two datasets were used for
REHA parameter tuning. Datasets are deposited in NCBI’s Gene
Expression Omnibus [5] and summarized in Table 1. A typical 10-
fold cross-validation was used and the testing of different RXA
algorithms. Depending on the algorithm, different tools were used
to test the algorithms:

• TSP, TSN, and k-TSP was performed with the AUERA soft-
ware [11], which is an open-source system for identification
of relative expression molecular signatures;

• EvoTSP and TIGER results were taken from the publication
as exactly the same datasets were used [6]

• TSPDT results were provided us by the authors [8].
Unfortunately, algorithms TSP, k-TSP, TSN and TSPDT use exhaus-
tive search and it is difficult to test them on whole datasets. The
AUERA software automatically performs some feature selection
due to the performance reasons and TSPDT is so computationally
demanding that it could not induce tree in a reasonable time. For
that case, the Relief-F feature selection was used and the number
of selected genes was arbitrarily limited to the top 1000 to allow
the algorithms also work with low-ranked features.

In all experiments, a default set of parameters for all algorithms
is used in all tested datasets and the presented results correspond to
averages of 20 runs. Considering that REHA is regular generational
EA, parameters such as population size, the maximum number of
generations, elitism rate, crossover and mutation probability must
be selected before evolution. Table 2 contains a brief listing of the
main parameters that have been used, however, more research on
tuning those settings is required.

Besides the typical evolutionary parameters, the REHA algorithm
requires two additional ones alpha and beta used in individuals
evaluation. The fitness function described in Equation 5 has three
objectives: accuracy, the resemblance of surrogate pairs and cost
of attributes. The role of parameters alpha and beta is to control
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Table 3: Comparison of top-scoring algorithms, including accuracy with its standard deviation and the number of unique
genes that build classifier’s model. The highest classifiers accuracy for each dataset was bolded.

DT TSP TSN k-TSP EvoTSP TIGER TSPDT REHA
accuracy accuracy accuracy size accuracy size accuracy size accuracy size accuracy size(attr.)

(a) 57.2 ± 2.4 61.9 ± 2.8 62.9 ± 3.3 10 65.6 ± 2.0 4.0 72.7 ± 3.6 2.8 60.1± 3.2 16.4 76.0 ± 2.0 2.2 (15)
(b) 88.7 ± 2.6 89.4 ± 2.1 90.1 ± 2.5 6 96.5 ± 1.3 2.1 97.4 ± 0.6 2.0 98.2 ± 1.3 2.0 97.3± 1.0 2.2 (4)
(c) 64.9 ± 3.5 63.7 ± 4.7 67.2 ± 3.2 10 78.1 ± 2.6 2.8 78.0 ± 3.5 3.1 72.3 ± 2.2 6.8 81.2 ± 2.9 4.1 (7)
(d) 93.5 ± 1.7 92.8 ± 1.5 94.1 ± 1.6 10 96.2 ± 1.1 2.1 93.0± 1.6 2.0 88.3 ± 3.5 3.0 97. 1± 3.0 2.0 (2)
(e) 56.0 ± 4.0 60.5 ± 5.1 58.4 ± 4.0 14 66.9 ± 5.6 3.1 75.9 ± 2.8 4.0 68.1 ± 5.1 5.7 76.7 ± 1.1 2.8 (7)
(f) 47.3 ± 4.8 50.1 ± 3.8 56.2 ± 2.2 18 66.2 ± 1.1 2.7 65.4 ± 1.9 3.0 67.2 ± 7.0 11.9 71.2 ± 1.0 2.5 (15)
(g) 81.9 ± 2.6 84.2 ± 2.7 87.2 ± 2.1 14 86.1 ± 2.8 4.1 89.5 ± 2.1 3.0 88.6 ± 0.6 4.3 91.4 ± 1.4 2.4 (12)
(h) 49.5 ± 3.5 51.7 ± 2.8 55.8 ± 5.3 10 53.6 ± 5.4 6.1 64.4 ± 4.0 5.3 59.6 ± 8.0 7.2 71.0 ± 3.6 2.0 (11)
Avg. 67.4 ± 3.3 69.3 ± 3.2 71.5 ± 3.0 11.5 76.2 ± 2.7 3.4 79.5 ± 2.5 3.1 75.3 ± 3.8 7.2 82.7 ± 2.0 2.3 (9)

the relative importance of resemblance and cost. Figure 3 shows
the parameter tuning experiment varying alpha and beta within
{0.0, 0.1, 0.2,0.3, 0.4, 0.5}. To select the best value of alpha and beta
we used two external tuning datasets (Table 1) of gene expression
data as the aim of the experiment is not to optimize the parameters
for a given dataset, but to find robust values that generally work
well in the domain. We then used best values of alpha and beta to
evaluate the generalizing ability of the fitness function in the tested
datasets (a)-(h) from Table 1. We can observe that the impact of
resemblance and costs objectives is not high but it is well balanced
as the highest accuracy is achieved when both parameters alpha
and beta are equal and greater than 0. Of course, it is not possible
to draw meaningful conclusions on the basis of only 2 sets.

4.2 REHA vs popular RXA algorithms
Table 3 summaries classification performance for the proposed so-
lution and it’s competitors. The model size of TSP and TSN is not
shown as it is fixed and equals correspondingly 2 and 3. It is clearly
visible that the proposed REHA solution managed to outperform all
popular RXA classifiers in 7 out of 8 datasets. The statistical analysis
of the obtained results using the Friedman test and the correspond-
ing Dunn’s multiple comparison test (significance level/p-value
equals 0.05), as recommended by Demsar [10] showed that the dif-
ferences in accuracy are significant. We have also performed an
additional comparison between the datasets with corrected paired
t-test [25] with the significance level equals 0.05 and 9 degrees of
freedom ( n-1 degrees of freedom where n = 10 folds). It showed
that REHA significantly outperforms all algorithms that apply ex-
haustive search on 7 datasets except the dataset (b) where there are
no statistical differences between TSPDT were found.

However, it should be noticed that improving classification ac-
curacy was not our primary goal. We wanted to make a model in
which gene pairs somehow interact with each other and also to
promote finding sub-interactions between co-expressed genes and
pairs. Such improvement in terms of classification accuracy was a
surprise even for us, however, this indicates the importance of the
patterns found. In addition, the size of the REHA model is much
smaller than another tree-structure system called TSPDT in terms
of size (height of the tree) as well as the number of unique genes
that constitute the pairs in each split/cluster.

4.3 Case study
In this section, we would like to check if results returned by the
REHA solutions are biologically meaningful. We focused on the
first tested dataset (a) denoted as GDS2771 that contains an analysis
of large airway epithelial cells from cigarette smokers without
cancer, with cancer, and with suspect lung cancer. The goal was
to provide insight into the feasibility of using gene expression to
detect early-stage lung cancer in smokers [14].

In the Figures 4 and 5, we want to show wherever the gene
cluster and the cost information affect the basic statistics of the best
individual founded so far in the evolution. We track the following
statistics:

• hierarchy size (number of internal nodes);
• average gene cluster size (number of gene pair);
• accuracy on the testing set;
• average resemblance of the pairs in cluster;
• average percent of pairs in cluster involving at least one
top-ranked attribute (top 20 attributes with the highest rank
/ lowest cost);

• average percent of pairs in cluster involving at least one
low-ranked attribute (attributes with rank over 200);

for the REHA algorithm and its variant without cost information
about the genes (denoted as REHANC ).

We enclose the average statistics for the best individual in each
generation for REHA and REHANC (see Figures 4 and 5).Accuracy
on the training set is not shown as it achieves 100% in the first
50-100 iterations and might obscure the figures.

There are a few things that should be noticed. The final size of
the REHA structure is found in less than a few hundred iterations,
but the search of gene clusters required more time (see Figures 4).
A longer adjustment is due to a large number of degrees of freedom
- its size, the resemblance of the pairs and the cost of the attributes.
However, despite gene cluster changes, the prediction performance
is stable, which confirms the robustness of the REHA model. In
addition, Figure 4 shows the percentage share of highest/lower
rank attributes that constitute the pairs. We can see that REHA
prediction model uses the pairs that are similar in more than 85%
decisions and are based on 85% of the top ranked attributes. Such
high quality of gene clusters improves the stability of internal nodes
and thus the whole classifier.
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Figure 4: The performance of the best individual founded so far on GDS2771 lung cancer dataset for the REHA system.

Figure 5 illustrates also how our solution would work without
incurring costs (rank of attributes). We see that the best individ-
ual for REHANC has a similar tree size, but, unlike REHA, much
smaller gene clusters. As the evolution progresses, the classifier
reduces its complexity and improves the resemblance of the clusters.
With the iteration number, the prediction accuracy on the testing
set decreases, suggesting that the REHANC slowly underfits to
the training data. In addition, we see that for REHANC the per-
centage of top attributes in clusters is around 30% which is almost
3-times smaller than in the case of REHA. Combination of small
gene clusters with the noisy or insignificant attributes is probably
responsible for poor REHANC performance.

Based on the description of the dataset (GSE4115 series) from
GenBank NCBI [2] we conducted a thorough examination of one
of the REHA output prediction models ( see Figure 6). In 9 gene
pairs, there was a total of 16 different genes as some of them occur
more than once either in the same cluster but in a different pair
or in a sub-cluster. To check if founded genes, gene pairs, and
gene clusters have some biological meaning we have decoded gene
names from GDS2771 with GPL96 platform provided by NCBI. We
found out that 11 founded genes are directly related to lung cancer,
for example, the HBA1 gene (#211699) impacts on survival of lung

cancer patients with diabetes mellitus and with a few other detected
genes focus on the same mutations [27].

5 CONCLUSIONS
Achieving high classification accuracy for gene expression datasets
is still a major problem. When searching for white-box solutions
researches and biologists often use classification algorithms based
on RXA because of their simplicity and relatively high prediction
power. However, it is not always enough. Such methods are capable
of finding interesting patterns but are limited to gene-gene rela-
tions within distinct pairs. We propose a new approach, based on
gene clusters, that allows searching for complex relations including
sub-groups of co-expressed genes. Our hierarchical solution called
REHA not only significantly improves the accuracy of predictions
but also replaces extremely computational demanding RXA exhaus-
tive search with an evolutionary heuristic. The efficiency of the
solution is boosted by embedding additional information about the
discriminative power of genes in the evolutionary process, carefully
design fitness function and genetic operators. We also managed to
unify all major variants of RXA solutions within REHA.

Preliminary experiments show that the knowledge discovered
by REHA is supported by biological evidence in the literature. A
biologist can, therefore, benefit from this ‘white box’ approach, as

1162



GECCO ’19, July 13–17, 2019, Prague, Czech Republic M. Czajkowski et al.

REHANC

 1

 2

 3

 4

 5

 6

 0  200  400  600  800  1000
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

T
re

e
 s

iz
e

Q
u
a
lit

y

Iteration number 

Accuracy (test set)
Resemblance 

Tree Size 
Cluster Size 

Top Attributes 
Low Attributes 

Figure 5: The performance of the best individual founded so far on GDS2771 lung cancer dataset for the REHANC system.

{(#204419 > #222339), (#219233 > #213515), (#214261 > #220389)}

Cancer{(#218741 > #209341), (#203240 > #206628), (#208978 > #211699), 

 (#221251 > #221173), (#219233 > #208178)}

Normal

Normal

{(#217414 > #218741)}

Cancer

Figure 6: An example hierarchical structure induced by REHA for GDS2771 lung cancer dataset.

it can produce accurate and meaningful classification models and
reveal new patterns in genomic data.

We see many promising directions for future research. In par-
ticular, from a machine learning point of view, we are focusing
on parameter tuning and optimization. On the other side, we are
currently working with biologists and bioinformaticians to better
understand the gene clusters generated by REHA. We also want to

adopt the proposed classification algorithm to work with protein
expression and metabolic databases as well as any other omics data.

Acknowledgments. This work was supported by the grant
MB/WI/1/2017 (first author) and S/WI/2/18 (second author) from
BUT founded by Polish Ministry of Science and Higher Education

1163



Relative evolutionary hierarchical analysis for gene expression data classification GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Rodrigo C. Barros, Márcio P. Basgalupp, Aléx A. Freitas, and Andre C.P.L.F.

De Carvalho. 2014. Evolutionary design of decision-tree algorithms tailored
to microarray gene expression data sets. IEEE Transactions on Evolutionary
Computation (2014). https://doi.org/10.1109/TEVC.2013.2291813

[2] Dennis A. Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, James
Ostell, Kim D. Pruitt, and Eric W. Sayers. 2018. GenBank. Nucleic Acids Research
(2018). https://doi.org/10.1093/nar/gkx1094 arXiv:1611.06654

[3] Tobias Blickle and Lothar Thiele. 1996. A comparison of selection schemes
used in evolutionary algorithms. Evolutionary Computation 4, 4 (1996), 361–394.
https://doi.org/10.1162/evco.1996.4.4.361

[4] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.
2017. Classification and regression trees. https://doi.org/10.1201/9781315139470
arXiv:arXiv:1011.1669v3

[5] Emily Clough and Tanya Barrett. 2016. The Gene Expression Omnibus database.
In Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-3578-9_5

[6] Marcin Czajkowski, Anna Czajkowska, and Marek Kretowski. 2016. TIGER: an
evolutionary search for Top Inter-GEne Relations. International Journal of Data
Mining and Bioinformatics (2016). https://doi.org/10.1504/IJDMB.2016.080042

[7] Marcin Czajkowski, Marek Grześ, and Marek Kretowski. 2014. Multi-test decision
tree and its application to microarray data classification. Artificial Intelligence in
Medicine 61, 1 (2014), 35–44. https://doi.org/10.1016/j.artmed.2014.01.005

[8] Marcin Czajkowski and Marek Kretowski. 2011. Top Scoring Pair Decision Tree
for Gene Expression Data Analysis. Springer New York, New York, NY, 27–35.
https://doi.org/10.1007/978-1-4419-7046-6_3

[9] Marcin Czajkowski and Marek Kretowski. 2014. Evolutionary approach for
relative gene expression algorithms. The Scientific World Journal (2014). https:
//doi.org/10.1155/2014/593503

[10] Janez Demsar. 2006. Statistical Comparisons of Classifiers over Multiple Data
Sets. Journal of Machine Learning Research 7 (2006). https://doi.org/10.1016/j.
jecp.2010.03.005 arXiv:arXiv:1011.1669v3

[11] John C. Earls, James A. Eddy, Cory C. Funk, Younhee Ko, Andrew T. Magis, and
Nathan D. Price. 2013. AUREA: An open-source software system for accurate
and user-friendly identification of relative expression molecular signatures. BMC
Bioinformatics (2013). https://doi.org/10.1186/1471-2105-14-78

[12] James A. Eddy, Jaeyun Sung, Donald Geman, and Nathan D. Price. 2010. Relative
expression analysis for molecular cancer diagnosis and prognosis. https://doi.
org/10.1177/153303461000900204

[13] Donald Geman, Christian D’Avignon, Daniel Q. Naiman, and Raimond L.Winslow.
2004. Classifying Gene Expression Profiles from Pairwise mRNA Comparisons.
Statistical Applications in Genetics and Molecular Biology (2004). https://doi.org/
10.2202/1544-6115.1071 arXiv:NIHMS150003

[14] Adam M. Gustafson, Raffaella Soldi, Christina Anderlind, Mary Beth Scholand,
Jun Qian, Xiaohui Zhang, Kendal Cooper, Darren Walker, Annette Mcwilliams,
Liu Gang, Eva Szabo, Jerome Brody, Pierre P. Massion, Marc E. Lenburg, Lam
Stephen, Andrea H. Bild, and Avrum Spira. 2010. Airway PI3K pathway activation
is an early and reversible event in lung cancer development. Science Translational
Medicine (2010). https://doi.org/10.1126/scitranslmed.3000251

[15] ZenaM. Hira andDuncan F. Gillies. 2015. A review of feature selection and feature
extraction methods applied on microarray data. Advances in Bioinformatics 2015
(2015). https://doi.org/10.1155/2015/198363

[16] Xin Huang, Xiaohui Lin, Lina Zhou, and Benzhe Su. 2018. Analyzing omics data
by pair-wise feature evaluation with horizontal and vertical comparisons. Journal
of Pharmaceutical and Biomedical Analysis (2018). https://doi.org/10.1016/j.jpba.
2018.04.052

[17] Dimitri Kagaris, Alireza Khamesipour, and Constantin T. Yiannoutsos. 2018.
AUCTSP: An improved biomarker gene pair class predictor. BMC Bioinformatics
(2018). https://doi.org/10.1186/s12859-018-2231-1

[18] Parminder Kaur, Daniela Schlatzer, Kenneth Cooke, and Mark R. Chance. 2012.
Pairwise protein expression classifier for candidate biomarker discovery for
early detection of human disease prognosis. BMC Bioinformatics (2012). https:
//doi.org/10.1186/1471-2105-13-191

[19] K.-M. Lin, J Kang, H Shin, and J Lee. 2009. A cube framework for incorporating
inter-gene information into biological data mining. International Journal of Data
Mining and Bioinformatics (2009). https://doi.org/10.1504/IJDMB.2009.023881

[20] Xiaohui Lin, Jiuchong Gao, Lina Zhou, Peiyuan Yin, and Guowang Xu. 2014.
A modified k-TSP algorithm and its application in LC-MS-based metabolomics
study of hepatocellular carcinoma and chronic liver diseases. Journal of Chro-
matography B: Analytical Technologies in the Biomedical and Life Sciences (2014).
https://doi.org/10.1016/j.jchromb.2014.05.044

[21] Xiaohui Lin, Jiuchong Gao, Lina Zhou, Peiyuan Yin, and Guowang Xu. 2014.
A modified k-TSP algorithm and its application in LC-MS-based metabolomics
study of hepatocellular carcinoma and chronic liver diseases. Journal of Chro-
matography B: Analytical Technologies in the Biomedical and Life Sciences (2014).
https://doi.org/10.1016/j.jchromb.2014.05.044

[22] Andrew T. Magis, John C. Earls, Youn Hee Ko, James A. Eddy, and Nathan D.
Price. 2011. Graphics processing unit implementations of relative expression

analysis algorithms enable dramatic computational speedup. Bioinformatics
(2011). https://doi.org/10.1093/bioinformatics/btr033

[23] Andrew T. Magis and Nathan D. Price. 2012. The top-scoring ’N’ algo-
rithm: a generalized relative expression classification method from small num-
bers of biomolecules. BMC Bioinformatics (2012). https://doi.org/10.1186/
1471-2105-13-227

[24] Zbigniew Michalewicz. 1996. Genetic algorithms + data structures = evolution
programs (3rd ed.). https://doi.org/10.2307/2669583

[25] Claude Nadeau and Yoshua Bengio. 2003. Inference for the generalization error.
Machine Learning (2003). https://doi.org/10.1023/A:1024068626366

[26] Marko Robnik-Šikonja and Igor Kononenko. 2003. Theoretical and Empirical
Analysis of ReliefF and RReliefF. Machine Learning (2003). https://doi.org/10.
1023/A:1025667309714 arXiv:arXiv:astro-ph/0005074v1

[27] Katie E. Rollins, Krishna K. Varadhan, Ketan Dhatariya, and Dileep N. Lobo. 2016.
Systematic review of the impact of HbA1c on outcomes following surgery in
patients with diabetes mellitus. https://doi.org/10.1016/j.clnu.2015.03.007

[28] Shilpi Shandilya and Chaitali Chandankhede. 2018. Survey on recent cancer
classification systems for cancer diagnosis. In Proceedings of the 2017 Interna-
tional Conference on Wireless Communications, Signal Processing and Networking,
WiSPNET 2017. https://doi.org/10.1109/WiSPNET.2017.8300231

[29] Ping Shi, Surajit Ray, Qifu Zhu, and Mark A. Kon. 2011. Top scoring pairs
for feature selection in machine learning and applications to cancer outcome
prediction. BMC Bioinformatics (2011). https://doi.org/10.1186/1471-2105-12-375

[30] Jonatan Taminau, Stijn Meganck, Cosmin Lazar, David Steenhoff, Alain Coletta,
Colin Molter, Robin Duque, Virginie de Schaetzen, David Y. Weiss Solís, Hugues
Bersini, and Ann Nowé. 2012. Unlocking the potential of publicly available
microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages.
BMC Bioinformatics (2012). https://doi.org/10.1186/1471-2105-13-335

[31] Aik Choon Tan, Daniel Q. Naiman, Lei Xu, Raimond L. Winslow, and Donald
Geman. 2005. Simple decision rules for classifying human cancers from gene
expression profiles. Bioinformatics (2005). https://doi.org/10.1093/bioinformatics/
bti631

[32] Kaimin Wu, Xiaofei Nan, Yumei Chai, Liming Wang, and Kun Li. 2016. DTSP-V:
A trend-based Top Scoring Pairs method for classification of time series gene
expression data. In 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). 1787–1794. https://doi.org/10.1109/BIBM.2016.7822790

[33] Hongyan Zhang, HaiyanWang, Zhijun Dai, Ming shun Chen, and Zheming Yuan.
2012. Improving accuracy for cancer classification with a new algorithm for genes
selection. BMC Bioinformatics (2012). https://doi.org/10.1186/1471-2105-13-298

1164

https://doi.org/10.1109/TEVC.2013.2291813
https://doi.org/10.1093/nar/gkx1094
http://arxiv.org/abs/1611.06654
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1201/9781315139470
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1504/IJDMB.2016.080042
https://doi.org/10.1016/j.artmed.2014.01.005
https://doi.org/10.1007/978-1-4419-7046-6_3
https://doi.org/10.1155/2014/593503
https://doi.org/10.1155/2014/593503
https://doi.org/10.1016/j.jecp.2010.03.005
https://doi.org/10.1016/j.jecp.2010.03.005
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1186/1471-2105-14-78
https://doi.org/10.1177/153303461000900204
https://doi.org/10.1177/153303461000900204
https://doi.org/10.2202/1544-6115.1071
https://doi.org/10.2202/1544-6115.1071
http://arxiv.org/abs/NIHMS150003
https://doi.org/10.1126/scitranslmed.3000251
https://doi.org/10.1155/2015/198363
https://doi.org/10.1016/j.jpba.2018.04.052
https://doi.org/10.1016/j.jpba.2018.04.052
https://doi.org/10.1186/s12859-018-2231-1
https://doi.org/10.1186/1471-2105-13-191
https://doi.org/10.1186/1471-2105-13-191
https://doi.org/10.1504/IJDMB.2009.023881
https://doi.org/10.1016/j.jchromb.2014.05.044
https://doi.org/10.1016/j.jchromb.2014.05.044
https://doi.org/10.1093/bioinformatics/btr033
https://doi.org/10.1186/1471-2105-13-227
https://doi.org/10.1186/1471-2105-13-227
https://doi.org/10.2307/2669583
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1023/A:1025667309714
https://doi.org/10.1023/A:1025667309714
http://arxiv.org/abs/arXiv:astro-ph/0005074v1
https://doi.org/10.1016/j.clnu.2015.03.007
https://doi.org/10.1109/WiSPNET.2017.8300231
https://doi.org/10.1186/1471-2105-12-375
https://doi.org/10.1186/1471-2105-13-335
https://doi.org/10.1093/bioinformatics/bti631
https://doi.org/10.1093/bioinformatics/bti631
https://doi.org/10.1109/BIBM.2016.7822790
https://doi.org/10.1186/1471-2105-13-298

	Abstract
	1 Introduction
	2 Background
	2.1 Algorithms for relative expression analysis
	2.2 Limitations of the RXA algorihtms

	3 Evolution of Hierarchical Co-Expressed Gene Clusters
	3.1 Representation
	3.2 Initialization
	3.3 Operators
	3.4 Fitness

	4 Experiments
	4.1 Setup
	4.2 REHA vs popular RXA algorithms
	4.3 Case study

	5 Conclusions
	References

