
Canonical Models

Marek J. Drużdżel

Wydział Informatyki
Politechnika Białostocka

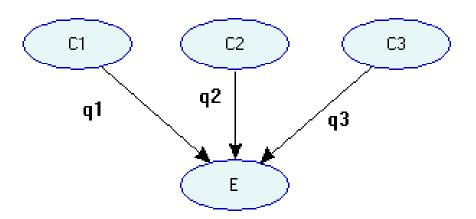
<u>m.druzdzel@pb.edu.pl</u> <u>http://aragorn.wi.pb.bialystok.pl/~druzdzel/</u> Practical BN models can be very large and densely connected

Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?
Is model structure important?
Other relevant issues

[Przytula et al.] 2,127 variables, 3,595 arcs, 2,261,001 independences, 12,351 numerical parameters (instead of $2^{2,127} \approx 10^{632}$!)

Fundamental problem: (too) many parameters

- Size of conditional probability tables (CPTs) grows exponentially in the number of parents
- This can become quickly unmanageable


parents

Node2	Node2	Ξ			Stat	Noc	le2	Stat	te0	State	1 L		Sta	ite1				
Node3	Node3		State0				310	0.5	31410	·'	tate0		=	Sta	te1			
Node4	Node4	□ Sta	ate0	Stat	e1 F	▶ State(J		0.5		0.5°	⊟ S	tate1	□ Sta	ate0	⊟ Sta	te1	
Node5	Node5	State0	State1	State0	State1	State1	 		0.E		0.5	State0	State1	StateO	State1	State0	State1	tate1
Node6	140063	Jiaico	Jiaici	Stateo	Jialei	Jorane	l		0.5		0.5	Jiaico	J(d(C)	Jialeo	Jiaici	Stateo	Jialei	State1
▶ State0	▶ State0	0.5	0.5	0.5	0.5	0.5	0.5	U.5	0.5	0.5	0.9	5 0.9	5 0.5	0.5	0.5	0.5	0.5	0.5
State1	State1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5 0.9	5 0.5	0.5	0.5	0.5	0.5	5 0.5

- Not uncommon to see 10-15 parents (would need between 1,024 and 32,768 parameters).
- A lot of work for experts or a lot of data needed.

Solution: Canonical gates

- Various solutions were proposed, but one of them seems to be most popular and useful: Noisy-OR
- We assume that all nodes are binary {present, absent}
- We specify the interaction between the parents and the child by means of one numerical parameter **q**_i per parent

Other relevant issues

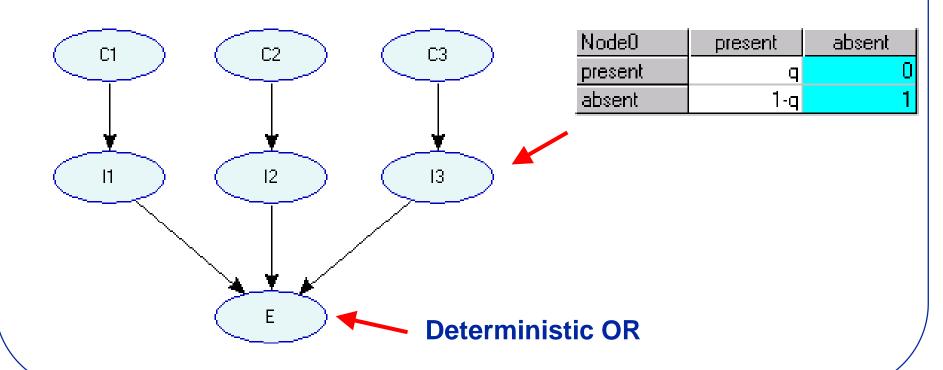
Solution: Canonical gates

Conditions that have to be fulfileld in practice for Noisy-OR to be applicable:

- There should be a causal mechanism for each parent such that the parent is able to impact the child variable in the absence of the other parents.
- The causal mechanisms through which each parent influences the child should be independent?
- If there are other, unmodeled causes, they should be independent of the modeled causes.

Other relevant issues

Noisy-OR: The meaning of q_i?


 q_i is the probability that E=present given $C_i=present$ and all other parents $C_{j\neq i}=absent$

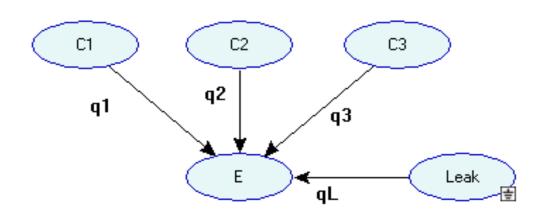
q_i=P(E=present | C₁=absent, ..., C_i=present, ..., C_n=absent)

Building Decision Models

Why is it called Noisy-OR?

If all parameters $q_i=1$, noisy-OR becomes logical OR Here is an alternative representation of Noisy-OR

Other relevant issues


Noisy-OR vs. CPT

Noisy-OR always defines a unique CPT (i.e., you can always calculate the CPT that is defined by a noisy-OR gate)

$$P(E = absent \mid C1,...,Cn) = \prod_{C_i = present} (1 - q_i)$$

Leaky Noisy-OR

- Noisy-OR assumes that the effect will be absent with probability 1 if all the causes are absent. This is not very realistic
- Leak is a special dummy node, that represents the influence of all unmodeled causes on the effect node
- Leak is always present

Other relevant issues

Leaky Noisy-OR: Parameters

- Leaky Noisy-OR is an extension of the Noisy-OR
- Two parameterizations of leaky Noisy-OR: due to Henrion and Diez (compound and net parameters)
- They are mathematically equivalent, however they imply different questions in knowledge elicitation

Leaky Noisy-OR: Diez

Leak probability q_L:

$$q_L = P(E = present \mid C1 = absent,..,CN = absent)$$

Link probability q_i:

$$q_i = P(E = present \mid C1 = absent,...,Ci = present,$$

 $CN = absent, L = absent)$

How to calculate the CPT:

$$P(E = absent \mid C1,...,Cn) = (1-q_L) \prod_{C_i = present} (1-q_i)$$

Leaky Noisy-OR: Henrion

Leak probability p_L: (same as Diez)

$$p_L = P(E = present \mid C1 = absent,..,CN = absent)$$

• Link probability p_i: (no leak term)

$$p_i = P(E = present \mid C1 = absent,...,Ci = present,$$

 $CN = absent)$

How to calculate CPT:

$$P(E = absent \mid C1,...,Cn) = (1 - p_L) \prod_{C_i = present} \frac{1 - p_i}{1 - p_L}$$

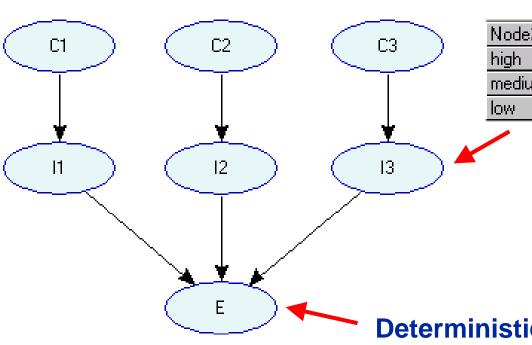
Other relevant issues

Henrion vs. Diez

- They imply different questions to ask of experts:
- Henrion:

"What is the probability that E is present given that C_i is present and all other modeled causes are absent?"

• Diez:

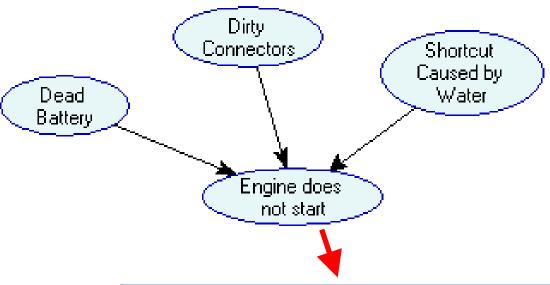

"What is the probability that E is present given that C_i is present and all other modeled and unmodeled causes are absent?"

Noisy-MAX

Elicitation of structure Elicitation of probabilities Canonical models

Are parameters important? Is model structure important? Other relevant issues

Noisy-MAX is a version of Noisy-OR for multi-valued nodes.

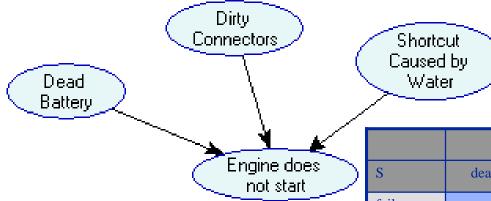

Node2	high	med	low
high	0.7	0.5	0
medium	0.2	0.3	0
low	0.1	0.2	1

Deterministic MAX

Example

Other relevant issues

Deterministic OR



DB		0	k		dead				
DC	clean		dirty		clean		dirty		
S	ok	short	ok	short	ok	short	ok	short	
fail	0	1	1	1	1	1	1	1	
start	1	0	0	0	0	0	0	0	

Elicitation of structure Elicitation of probabilities

Canonical models
 Are parameters important?
 Is model structure important?
 Other relevant issues

Noisy-OR

 $P(E = absent \mid C1,...,Cn) = \prod_{C_i = present} (1 - q_i)$

		D	В	D	С	S		
)	S	dead	ok	dirty	clean	short	ok	
	fail	0.9	0	0.8	0	0.5	0	
	stat	0.1	1	0.2	1	0.5	1	

DB		0	k		dead			
DC	clean		dirty		clean		dirty	
S	ok	short	ok	short	ok	short	ok	short
fail	0	0.5	0.8	0.9	0.9	0.95	0.98	0.99
stat	1	0.5	0.2	0.1	0.1	0.05	0.02	0.01

Leaky Noisy-OR

Elicitation of structure
Elicitation of probabilities
Canonical models
Are parameters important?
Is model structure important?
Other relevant issues

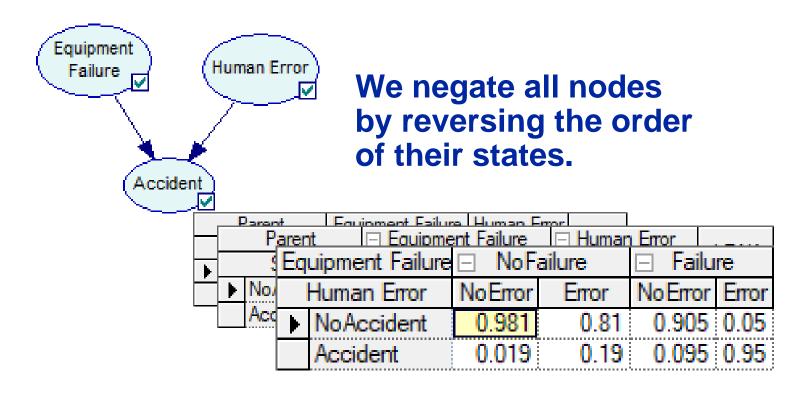
We use a "leak" or "background" probability to model all unmodeled causes

ty	Dead Battery	Engine does not Start	Shortcut Caused by Water

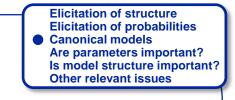
Dirty Connectors

	D	В	D	С	S	leak	
S	dead	ok	dirty	clean	short	ok	
fail	0.9	0	0.8	0	0.5	0	0.1
stat	0.1	1	0.2	1	0.5	1	0.9

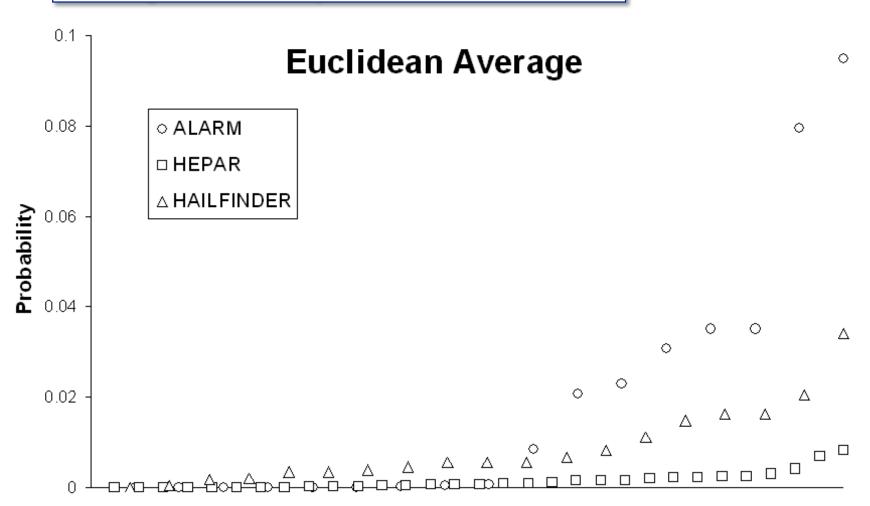
DB		0	k		dead			
DC	clean		dirty		clean		dirty	
S	ok	short	ok	short	ok	short	ok	short
fail	0.1	0.5	0.8	0.888	0.9	0.944	0.977	0.987
stat	0.9	0.5	0.2	0.112	0.1	0.056	0.023	0.013


$$P(E = absent \mid C1,...,Cn) = (1 - q_L) \prod_{C_i = present} \frac{1 - q_i}{1 - q_L}$$

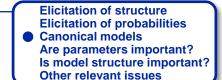
Other relevant issues

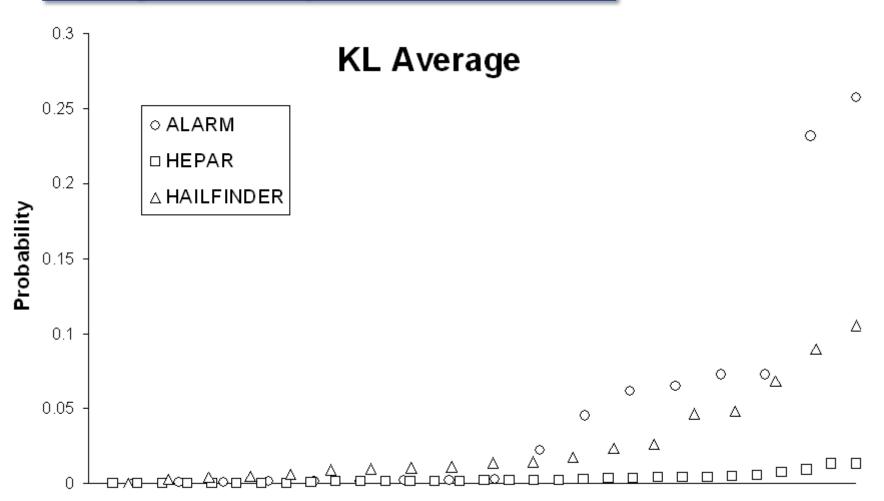

Noisy-AND/MIN

Based on the DeMorgan's law:


$$X \wedge Y = \neg(\neg X \vee \neg Y))$$

Canonical Gates in Practical Models


Noisy MAX in practical models


Proportion of Nodes in Model

[Zagorecki & Druzdzel 2011]

Noisy MAX in practical models

Proportion of Nodes in Model

[Zagorecki & Druzdzel 2011]

Other relevant issues

Concluding remarks

- In practical models, canonical gates are the only way to go
- There are significant computational advantages that stem from canonical gates

ф