Wprowadzenie do badan naukowych

Semestr letni 2024-2025, wtorki, 17:40-19:10 (Aula B5)
Budynek Rektoratu Politechniki Bialostockiej, Wiejska 45-A, Bialystok

Spotykamy sie co tydzien w pierwszej polowie semestru.
Daty spotkan:
4, 11, 18, 25 marzec
1, 8, 15 kwiecien
27 kwiecien (sprawdzian)

Instruktor: Marek J. Druzdzel

Zarys przedmiotu:

"Science is not science fiction. It accepts the tests of observation and experiment, acknowledges the supremacy of fact over wish or hope. The smallest experiment can crash to earth the most attractive theory." --- Herbert A. Simon

Wyklad "Wprowadzenie do badan naukowych" wprowadza studentów drugiego stopnia informatyki do bogatej dziedziny badan empirycznych (czyli doswiadczalnych), prowadzac ich przez meandry problemów powiazanych z poznawaniem swiata.

Wyklad nie ma na celu nauczenia formalnych szczególów procedur statystycznych ani uczynienia sluchaczy doswiadczonymi praktykami w zakresie okreslonych narzedzi projektowych. To mozna i powinno sie zdobyc na innych specjalistycznych kursach. Celem tego wykladu jest rozwiniecie w sluchaczach szerokich zdolnosci krytycznych, a nacisk polozony bedzie na podstawowy proces dociekan naukowych. Wyklad ma na celu poprawe zdolnosci do myslenia o pytaniach badawczych i formalnego formulowania ich oraz do wyboru sposobów ich rozwiazywania poprzez ilosciowe badania empiryczne.

Podejscie przyjete na tym kursie jest nieco nieortodoksyjne w porównaniu z tym, co mozna znalezc w istniejacych podrecznikach i kursach na temat projektowania eksperymentów. Zaczniemy od koncepcji przyczynowosci i grafów przyczynowych oraz tego, jak reprezentuja one statystyczna niezaleznosc. Grafy przyczynowe sa bliskie ukierunkowanym modelom probabilistycznym, takim jak sieci bayesowskie, coraz czesciej stosowane w systemach wspomagania decyzji. Pomoze to w uzyskaniu wgladu w strukture eksperymentów naukowych i zrozumieniu, na czym polegaja eksperymenty. Jak kazdy wyklad na temat projektowania eksperymentów, ten równiez obejmie podstawy projektowania eksperymentów i tematy, które sa z nim bezposrednio zwiazane, takie jak identyfikacja i artykulowanie problemów badawczych, formulowanie testowalnych hipotez, pomiary i gromadzenie danych, artefakty zachodzace pomiedzy podmiotem i eksperymentatorem i ich kontrola, opisywanie i wyswietlanie danych, interpretacja i wyciaganie wniosków z analizy danych oraz raportowanie wyników badan i ich implikacji. Kurs obejmie równiez mniej ortodoksyjne tematy, a mianowicie metody badawcze stosowane w informatyce, w szczególnosci symulacja i odkrywanie komputerowe.

Ci z Panstwa, którzy beda chcieli pobawic sie programem GeNIe, którego uzywac bede na zajeciach do demonstracji grafów przyczynowo-skutkowych oraz do odkrywania przyczynowosci z danych, moga zaladowac go pod nastepujacym adresem: https://www.bayesfusion.com/. Wersja akademicka jest darmowa dla celów dydaktycznych i badawczych.

Zaliczenie:

Zaliczenie wykladu odbedzie sie na podstawie pisemnego sprawdzianu przeprowadzonego na ostatnich (45-minutowych) zajeciach. Sprawdzian przeprowadzony zostanie "w stroju kapielowym na srodku sali", a wiec bez pomocy naukowych w rodzaju podrecznikow, notatek czy tez urzadzen elektronicznych i bedzie obejmowal material z calego semestru. Chcialem tutaj zwrocic uwage na to, ze nie istnieje dobry podrecznik do calosci przedstawionego materialu, a moje slajdy, ktore Panstwu oczywiscie udostepnie moga okazac sie zbyt kryptyczne do opanowania materialu. Polecam wiec Panstwu aktywne uczestnictwo w zajeciach.

Istnieje mozliwosc zwolnienia ze sprawdzianu na podstawie obecnosci na zajeciach. Ci z Panstwa, ktorzy zechca skorzystac z tej mozliwosci beda mogli wpisac sie na liste obecnosci na kazdym z wykladow. Obecnosc oznacza aktywne uczestniczenie w zajeciach, a wiec nie tylko fizyczna obecnosc, ale sledzenie tego co sie dzieje na zajeciach. W szczegolnosci odlozenie laptopow, telefonow komorkowych i innych urzadzen odwracajacych Panstwa uwage oraz nierozmawianie z sasiadami. Obecnosc na wszystkich siedmiu zajeciach da w takim wypadku ocene 5.0, jedna nieobecnosc obnizy ta ocene do oceny 4.0, a dwie nieobecnosci do oceny 3.0. Wiecej niz dwie nieobecnosci beda oznaczaly wybor drogi zaliczenia poprzez sprawdzian.

Zarys tresci wykladu i daty spotkan:

  • Znaczenie metod empirycznych (4 marca)
  • Niepewnosc, statystyka (11 marca)
  • Przyczynowosc i prawdopodobienstwo (18 marca)
  • Klasyczne projektowanie eksperymentow (25 marca, 1 kwietnia, 8 kwietnia)
  • Problemy w laboratorium (15 kwietnia)
  • Metody oparte na obliczeniach, symulacja, sztuczne spoleczenstwa
  • Materialy z wykladu
    Marek Druzdzel's teaching page
    Marek Druzdzel's home page


    HOME marek@sis.pitt.edu / Last update: 15 April 2025