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/Course schedule \

Learning: structure/causal discovery, parameter
learning, model validation techniques

Hands-on exercises (learning)

Decision analysis: expected utility theory, utility
elicitation, influence diagrams

Hands-on exercises (decision analysis)
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/Session overview \

« Motivation

o Causality and probability
e Constraint-based learning
e Bayesian learning

« Example

« Software demo

e Concluding remarks
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/What | want you to know after this session \

« Understand the relationship between probability and
causality

e Understand the principles behind learning causal
models

 Be able to learn a model from data using GeNle
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Learning Bayesian networks from data

{ @ Motivation

Constraint-based learning

Bayesian learning
Example
Software demo
Concluding remarks

There exist algorithms with a capability to analyze data, discover
causal patterns in them, and build models based on these data.
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Bayesian learning
Example

Learning Bayesian networks from data

Software demo

{ @ Motivation
Constraint-based learning
Concluding remarks

The problem of learning:

Given a set of variables (a.k.a.
attributes) X and a data set D of
simultaneous values of variables i
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Obtain insight into causal connections
among the variables in X (for the
purpose of understanding and prediction
of the effects of manipulation)
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Learn the joint probability
distribution over the variables in X

Learning Bayesian Networks and Causal Discovery




¢ Etﬂgrt]i;/tarlgionibased learning

Esg;siflig learning

/ Softwgredemo y
Goal 1 (insight): Why are we interested in causality? F—

Reason 1: Causality allows us to predict the effects
of manipulation.

Reason 2: People (and that includes experts) think in
causal terms, so it is easier to build causal models.

Given (1), I1s (2) really surprising?
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@ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
. N Concluding remarks
Causality and probability

The only reference to causality in a typical statistics textbook is:
“correlation does not mean causation”

(if the textbook contains the word “causality” at all ©).

Many confusing substitute terms: “confounding factor,” “latent
variable,” “intervening variable,” etc.

What does correlation mean then (with respect to causality)?

The goal of experimental design is often to establish (or
disprove) causation. We use statistics to interpret the results
of experiments (i.e., to decide whether a manipulation of the
Independent variable caused a change in the dependent
variable).

How are causality and probability actually related and what
does one tell us about the other?

Not knowing this constitutes a handicap! /




{ @ Motivation
[ Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

Causality and probability

Causality and probability are closely related and their relation
should be made clear in statistics.

Probabilistic dependence is considered a necessary condition for
establishing causation (is it sufficient?).

Flu Flu and fever are correlated because flu may

cause fever.

A cause can cause an effect but it does not
have to. Causal connections result in
probabilistic dependencies (or correlations in
linear case).
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@ Motivation
Constraint-based learning
Bayesian learning

Example
Software demo
Concluding remarks

Causal graphs

Acyclic directed graphs (hence, no
time and no dynamic reasoning)
representing a snapshot of the world at
a given time.

Nodes are random variables and arcs
are direct causal dependencies
between them.

Causal connections result in correlation
(in general probabilistic dependence).
Feeling

e glass on the road will be
correlated with flat tire

e glass on the road will be
correlated with noise

 bumpy feeling will be
correlated with noise

Learning Bayesian Networks and Causal Discovery
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/Causal Markov condition
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Bayesian learning
Example
Software demo

@ Motivation
Constraint-based learning
Concluding remarks

An axiomatic condition describing the relationship
between causality and probability.

A variable in a causal graph is probabilistically
Independent of its non-descendants given its
Immediate predecessors.

Axiomatic, but used by almost everybody in practice and
Nno convincing counter examples to it have been shown
so far (at least outside the quantum world).
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@ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
=, . . . . Concluding remarks
Markov condition: Implications

Variables A and B are
probabilistically dependent if there
exists a directed active path from
Ato B or from B to A:

Thorns on the road are correlated
with car damage because there is
a directed path from thorns to car
damage.

Car
Damage
l: Learning Bayesian Networks and Causal Discovery /




{ @ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
=, . . . . Concluding remarks
Markov condition: Implications

Variables A and B are
probabilistically dependent if there
exists a C such that there exists a
directed active path from Cto A
and there exists a directed active
path from C to B:

Car damage is correlated with
noise because there is a directed
path from flat tire to both (flat tire
IS a common cause of both).
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/Markov condition: Implications

Variables A and B are probabilistically
dependent if there exists a D such
that D is observed (conditioned upon)
and there exists a C such that A is
dependent on C and there exists a
directed active path from C to D and
there exists an E such that B is
dependent on E and there exists a
directed active path from E to D:

Nails on the road are correlated with
glass on the road given flat tire
because there is a directed path from
glass on the road to flat tire and from
nails on the road to flat tire and flat
tire is observed (conditioned upon).

Bayesian learning
Example

Software demo
Concluding remarks

@ Motivation
[ Constraint-based learning
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@ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
- . Concluding remarks
Markov condition:

Summary of implications

Variables A and B are probabilistically dependent if:

* there exists a directed active path from A to B or there
exists a directed active path from B to A

» there exists a C such that there exists a directed active
path from C to A and there exists a directed active path
from Cto B

* there exists a D such that D is observed (conditioned
upon) and there exists a C such that A is dependent on C
and there exists a directed active path from C to D and
there exists an E such that B is dependent on E and there
exists a directed active path from Eto D
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/Markov condition:
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Conditional independence

Once we know all direct causes of an
event E, the causes and effects of
those causes do not tell anything new
about E and its successors.

(also known as “screening off”)

E.g.,

» Glass and thorns on the road are
iIndependent of noise, bumpy
feeling, and steering problems
conditioned on flat tire.

* Noise, bumpy feeling, and steering
problems become independent
conditioned on flat tire.

Bumpy
Feeling

Constraint-based learning
Bayesian learning
Example

Software demo

@ Motivation
[ Concluding remarks

Steering
Problems

l Learning Bayesian Networks and Causal Discovery /



{ @ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
. Concluding remarks
Intervention

Manipulation theorem [Spirtes, Glymour & Scheines 1993]:

Given an external intervention on a variable A in a causal

graph, we can derive the posterior probability distribution
over the entire graph by simply modifying the conditional
probability distribution of A.

If this intervention is strong
enough to set A to a specific
value, we can view this
intervention as the only cause
of A and reflect this by
removing all edges that are
coming into A. Nothing else in
\ the graph needs to be modified

l Learning Bayesian Networks and Causal Discovery /

Intervention




' d

/Intervention: Example

Suicide eliminates
cancer as a cause of
this brave samurai’s
death.

Bayesian learning
Example
Software demo

@ Motivation
Constraint-based learning
Concluding remarks

" No?! Yes!!
) Wooaah!
A cancer tumor!

Learning Bayesian Networks and Causal Discovery /
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Constraint-based learning
Bayesian learning
Example

Software demo

@ Motivation
[ Concluding remarks

Intervention: Example

Making the tire flat with a knife makes
glass, thorns, nails, and what-have-
you irrelevant to flat tire. The knife is
the only cause of flat tire.

Learning Bayesian Networks and Causal Discovery




{ @ Motivation
[ Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

Selection bias

Observing correlation is in general not enough to establish

causality.
genetic factors

Q2 lung cancer
smoking

* If we do not randomize, we run the danger that there are common
causes between smoking and lung cancer (for example genetic
factors).

« These common causes will make smoking and lung cancer
dependent.

It may, in fact, also be the case that lung cancer causes smoking.
\ * This will also make them dependent without smoking causing

lung cancer.

l Learning Bayesian Networks and Causal Discovery




{ @ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
. . Concluding remarks
Experimentation

Empirical research is usually concerned with testing causal hypotheses.

Smoking and lung cancer are correlated.

Can we reduce the incidence of lung cancer by reducing smoking?
In other words: Is smoking a cause of lung cancer?

Each of the following causal structures is compatible
with the observed correlation

G = genetic factors G
S = smoking
C = lung cancer S i
%/ 5

OO

Learning Bayesian Networks and Causal Dlscovery
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@ Motivation
Constraint-based learning
Bayesian learning

Example
Software demo
Concluding remarks

Experimentation

genetic factors

coin QO

AN

C/L

asbestos

: lung cancer
smoking

* In arandomized experiment, coin becomes the only cause of
smoking.

« Smoking and lung cancer will be dependent only if there is a
causal influence from smoking to lung cancer.

o If Pr(C|S) # Pr(C|~S) then smoking is a cause of lung cancer.

» Asbestos will simply cause variability in lung cancer (add noise
to the observations).

\ But, can we really experiment in this domain?

Learning Bayesian Networks and Causal Discovery
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@ Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
. . Concluding remarks
Science by observation

“... Correlation between smoking and
lung cancer means as much as
correlation between apple imports and
raise of divorce ...”

Sir Ronald A. Fisher, a prominent statistician, father of experimental design

“... George Bush taking credit for the
end of the cold war is like a rooster
taking credit for the daybreak ...”

Vice-president Al Gore towards vice —president Dan Quayle
during their first (vice) presidential debate, Fall 1992

Learning Bayesian Networks and Causal Discovery /
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Bayesian learning

Science by observation

Example
Software demo

@ Motivation
Constraint-based learning
Concluding remarks

Experimentation is not always possible.
We can do quite a lot by just observing.

Assumptions are crucial in both experimentation and
observation, although they are usually stronger in the latter.

New methods in causal discovery: squeezing data to the limits

Learning Bayesian Networks and Causal Discovery




{ @ Motivation
[ Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

/Approaches to learning Bayesian networks

Constraint search-based learning

Search the data for independence relations to give us a
clue about the causal relations [Spirtes, Glymour, Scheines
1993].

Bayesian search learning

Search over the space of models and score each model
using the posterior probability of the model given the data
[Cooper & Herskovitz 1992; many others].
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{ Motivation
[Q Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

/Constraint search-based learning

“Correlation does not imply causation”

True but only in limited settings (e.g., two variables) and
typically abused by authors of college textbooks ©.

If x and y are dependent, we can indeed simplify the
causal picture to four simplified cases:

Sl

l Learning Bayesian Networks and Causal Dlscovery
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[Q Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

/Constraint search-based learning

Not necessarily true in case of three variables:

X and z are dependent
y and z are dependent
X and y are independent
X and y are dependent given z

We can establish —
causality!

l Learning Bayesian Networks and Causal Discovery /
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@ Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

/Foundations of constrain-based

search causal discovery

 Markov Condition: |
structure = independence in data.

 Faithfulness Condition:
structure < independence in data.

The causal graph \1

determines what

is independent. All independences in the
data are structural, I.e.,

are consequences of
Markov condition.
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Bayesian learning
Example

Software demo

Motivation
@ Constraint-based learning
Concluding remarks

Violations of faithfulness condition

Faithfulness assumption is more controversial.
While every scientist makes it in practice, it does
not need to hold.

Sexual
intercourse
with an
HIV carrier

Needle
sharing with
an HIV carrier

Given that HIV virus infection has not
taken place, needle sharing is independent
from intercourse.

Learning Bayesian Networks and Causal Discovery
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Violations of faithfulness condition l

Motivation

@ Constraint-based learning
Bayesian learning
Example
Software demo
Concluding remarks

(_» Stay Up Before an Exam

ves 80% [T

No 20% (]

y w
o Learn Mare o Be Tired
ves 63% |[IT] ves63% ]
No 32% | No 32% |

BN F

() Exam Performance

cood 50% R
Poor E-U"."EI

The effect of staying up late before the exam on the
exam performance may happen to be zero:

being tired may cancel out the effect of more knowledge.

But is it likely?

Learning Bayesian Networks and Causa

| Discovery
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[Q Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

/Constraint search-based learning

All possible networks ...

O O
O

O
O

O-0
O

¥
1S
S
e
Y
T
¥ TN

R

... can be divided into equivalence classes
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e
@ Constraint-based learning
Bayesian learning
Example
Software demo
. Concluding remarks
Theorems useful in search

Theorem 1 (skeleton)

There is no edge between X and Y if and only if Xand Y are
Independent given any subset (including the null set) of the
other variables.

Theorem 2 (v-structures)

If X—Y — Z, X and Z are not adjacent, and X and Z are
Independent given some set W, then X—»Y«Z if and only if
W does not contain Y.

l Learning Bayesian Networks and Causal Discovery /
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[Q Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

Causal model search

1. Find (conditional) independencies in the data.

2. Infer from these independencies which (classes of)
causal structures could have given rise to these
Independencies (e.g., the PC algorithm).

Learning Bayesian Networks and Causal Discovery
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Motivation
@ Constraint-based learning
Bayesian learning
Example
Software demo
. Concluding remarks
PC algorithm (sketch)

Step O:
Begin with a complete undirected graph.
Step 1 (Find adjacencies):

For each pair of variables <X,Y>if X and Y are independent
given some subset of the other variables, remove the X-Y
edge.

Step 2: (Find v-structures):

For each triple X—Y-Z, with no edge between X and Z, if X and Z
are independent given some set not containing Y, then orient
X=-Y-Z as X>Y&«~Z.

Step 3 (Avoid new v-structures and cycles):

— if X»>Y—Z, but there is no edge between X and Z, then orient
Y-Z as Y~Z.

— If X—Z, and there is already a directed path from X to Z, then
orient X — Z as X—Z.

l Learning Bayesian Networks and Causal Discovery /
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/ PC algorithm: Example [ e
Causal Independencies entailed by
A Graph the Markov condition:
C D AL1lB
// A1D|B,C
B
(0) Begin with (1) From A L B, remove A—B
A \\ A \
/ % D > C D

l Learning Bayesian Networks and Causal Discovery /
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/PC algorithm: Example

Orient C -D as C —»D.

A
\
C ——D

\ , :

3 &
% 3
o 4
ia g

(1) From A L D | B,C, remove A—D

(3) Avoid a new v-structure (A—>C«D),

Bayesian learning
Example
Software demo

Motivation
@ Constraint-based learning
Concluding remarks

(2) From A L B, orient
A—-C-B as A—>C«B

A\

C

s

(3) Avoid a cycle (B -C -D —-B),
Orient B —D as B —D.

D

s /

Learning Bayesian Networks and Causal Discovery
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[Q Constraint-based learning

Bayesian learning
Example

Software demo
Concluding remarks

/Patterns: Output of the PC algorithm

PC algorithm outputs a ‘pattern’, a kind of graph containing

directed (—), bi-directional («»), and undirected (—) edges
which represents a Markov equivalence class of Models

— A directed edge A—B in the ‘pattern’ indicates that there
IS an edge oriented A—B in every graph in the Markov
equivalence class

— A bi-directional edge A<>B In the ‘pattern’ indicates that
there is an edge between A and B in every graph in the
Markov equivalence class, although its direction is
Impossible to establish based on the data

— An undirected edge A—B in the ‘pattern’, indicates that
there is an edge between A and B in every graph in the
Markov equivalence class, although its direction is
iImpossible to establish based on the data; thereis a

possible common cause between these variables in every
\ graph in the Markov equivalence class /
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@ Constraint-based learning
Bayesian learning
Example
Software demo

/Dealing with errors in independence tests:
Search with a varying value of statistical significance [

Concluding remarks

Independence tests performed in the first phase of the
algorithm may result in Type | and Type Il errors.
It is a good practice to vary the level of statistical
significance a, from very low to very high values.

Graphs found with low values of a will be sparse. One can

trust existence of arcs (low value of @, hard to reject null
hypothesis Hythat variables are independent; when H, still
gets rejected, it means that the dependence was
strong/robust).

Graphs found with high values of a will be dense. One can

trust absence of arcs (high value of @, easy to reject Hythat
variables are independent; when H, still does not get
rejected, it means that the independence was

strong/robust). /
Learning Bayesian Networks and Causal Discovery
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@ Constraint-based learning
Bayesian learning
Example
Software demo
. Concluding remarks
Continuous data

Causal discovery is independent of the actual distribution of
the data.

The only thing that we need is a test of (conditional)
iIndependence.

No problem with discrete data.

In continuous case, we have atest of (conditional)
iIndependence (partial correlation test) when the data comes
from multi-variate Normal distribution.

Need to make the assumption that the data is multi-variate
Normal.

The discovery algorithm turns out to be very robust to this
assumption [Voortman & Druzdzel, 2008].

Learning Bayesian Networks and Causal Discovery /
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[Q Constraint-based learning

Bayesian learning

Example

Normality Concluding remarks
tstsc
10%
5%
40 5 &0 7o &0 S0

Multi-variate normality is equivalent to two conditions:
\ (1) Normal marginals and (2) linear relationships

Learning Bayesian Networks and Causal Discovery
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Motivation

@ Constraint-based learning
Bayesian learning
Example

1 1 Soft d
Linearity Concluding remarks

tstsc vs. apret
100

S0

B0

70

B

apret

504

404

30

204

1':' T T T T
40 50 50 70 a0 o0
tstsc

Multi-variate normality is equivalent to two conditions:
\ (1) Normal marginals and (2) linear relationships

Learning Bayesian Networks and Causal Discovery
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Motivation

 Arepresentation for the current state (a
network structure.)

A scoring function for each state (the
posterior probability).

A set of search operators.
— AddArc(X,Y)

— DelArc(X,Y) g\O

— RevArc(X,Y)
« A search heuristic (e.g., greedy search).

 The size of the search space for n
variables is almost 3 to the power of C",
possible graphs! (e.g., for 10 variables, we
have 3% possible graphs)

\ 5 .
g F
% $
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AN

Constraint-based learning
@ Bayesian learning
Example
/ [ cs;gfnt\c/;\ﬁrdeig; rr]rclecl)ﬂarks
Elements of a search procedure

oY

d

e
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Constraint-based learning
@ Bayesian learning
Example
/ . — [ S e ramarks
Posterior probability score

P(D|S)P(S)
P(D)

P(S|D) = < P(D|S)P(S)

“Marginal likelihood” P(D|S):
 Given a database
 Assuming Dirichlet priors over parameters

LA Tey) LD + Ny )

PO =1H e a1

i=1 j=1 k=1 F(aijk)

l Learning Bayesian Networks and Causal Discovery /
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[ Constraint-based learning
(]

Bayesian learning
Example

Software demo
Concluding remarks

/Dealing with local maxima: Restarts

RV IRZR

Starting from a variety of different points (in this case,
a variety of different graphs) increases the probability
\ of finding the graph with a maximum score.

Learning Bayesian Networks and Causal Discovery
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Bayesian learning
Example

/Constraint—based learning: Open problems

Software demo

Constraint-based learning
(]
Concluding remarks

Pros:

o Efficient, O(n?) for sparse
graphs.

e Hidden variables can be

e “Older” technology, many
researchers do not seem to
be aware of it.

\ i s
3 3
% 3
e, o
oy a
Wina gF

discovered in a modest way.

Cons:

 Discrete independence tests are
computationally intensive

= heuristic independence tests?
e Missing data is difficult to deal with
= Bayesian independence test?

Learning Bayesian Networks and Causal Discovery /
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Bayesian learning
Example
Software demo

/Bayesian learning: Open problems

[ Constraint-based learning
(]

Concluding remarks

Pros:

e Missing data and hidden
variables are easy to deal
with (in principle).

 More flexible means of
specifying prior
knowledge.

« Many open research
guestions!

Cons:

« Essentially intractable.

» Search heuristics (most efficient)
typically lead to local maxima.

 Monte-Carlo techniques (more
accurate) are very slow for most
interesting problems.

Learning Bayesian Networks and Causal Discovery /
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Bayesian learning
Example
Software demo

Example application

Motivation
Constraint-based learning
(]
Concluding remarks

e Student retention in US colleges.

e Large problem for US colleges.

o Correctly predicted that the main causal factor
In low student retention is the quality of
iIncoming students.

[Druzdzel & Glymour, 1994]

Learning Bayesian Networks and Causal Discovery




Motivation
Constraint-based learning

Bayesian learning
Example

szample: What causes low student retention? [i‘éfszﬁzﬁﬁ;mwks

« Some US colleges lose over 80% of their incoming
(undergraduate) students within the first year.
* Below a histogram of the 1994 retention rates of 170 US

national colleges.

apret

5%
4%

250

\ 10 20 30 40 50 60 70 50 30 "y
l Learning Bayesian Networks and Causal Discovery




Example: What causes low student retention’?[

Motivation
Constraint-based learning
Bayesian learning
Example

Software demo
Concluding remarks

Everything seems to be correlated with everything.
What would you suggest causes low student retention?

spend apret top10 rejr tstsc pacc strat

salar

spend

apret | 0.601281

top10 | 0.675686 0.642464

rejr | 0.633544 0.514958 0.643163

tstsc | 0.71491 0.782183 0.798807 0.628601

pacc | -0.38673 -0.302834 -0.207505 -0.0715207 -0.1§4223

strat  |-O§561755 -0.438311 -O.EE?SET -U.iSEﬂ' -0465226 0.131858

salar | 0.711838 0635852 0.637648 0.606747 0.715472 -0By524 -0.§47673

Learning Bayesian Networks and Causal Discovery
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Constraint-based learning

Bayesian learning
Example

szample: What causes low student retention? [ézfézﬂﬁzﬁﬁsmarks

o It turns out that every model that we obtain by means of a
learning procedure has a direct link between test scores
and high school standing (measures of the quality of
incoming students) and retention.

* This finding has been confirmed by a real-world experiment.
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Concluding remarks

Some challenges

Scaling up -- especially Monte Carlo techniques.

Practically dealing with hidden variables --
unsupervised classification.

Applying these techniques to real data and real
problems.

Hybrid techniques: Constraint-based + Bayesian
(e.g., Dash & Druzdzel, 1999).

Learning causal graphs in time-dependent domains
(Dash & Druzdzel, 2002).

Learning causal graphs and causal manipulation
(Dash & Druzdzel, 2002).

Learning dynamic causal graphs from time series

data (Voortman, Dash & Druzdzel 2010)

Learning Bayesian Networks and Causal Discovery




'

The reminder of this session

Motivation
Constraint-based learning
Bayesian learning
Example

@ Software demo
Concluding remarks

N

l Learning Bayesian Networks and Causal Discovery




' 4

Motivation
Constraint-based learning
Bayesian learning
Example
Software demo
. @ Concluding remarks
Concluding remarks

 Observation is a valid scientific method

« Observation allows often to restrict the class of possible
causal structures that could have generated the data.

 Learning Bayesian networks/causal graphs is very exciting:
It is a different and powerful way of doing science.

« Thereis arich assortment of unsolved problems in causal
discovery / learning Bayesian networks, both practical and
theoretical.

 Learning has been an active area of my research (GeNle,
https://www.bayesfusion.com/, is a product of this work).
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